<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

自動駕駛車聯網中通感算融合研究綜述與展望

馬忠貴 李卓 梁彥鵬

馬忠貴, 李卓, 梁彥鵬. 自動駕駛車聯網中通感算融合研究綜述與展望[J]. 工程科學學報, 2023, 45(1): 137-149. doi: 10.13374/j.issn2095-9389.2022.04.16.003
引用本文: 馬忠貴, 李卓, 梁彥鵬. 自動駕駛車聯網中通感算融合研究綜述與展望[J]. 工程科學學報, 2023, 45(1): 137-149. doi: 10.13374/j.issn2095-9389.2022.04.16.003
MA Zhong-gui, LI Zhuo, LIANG Yan-peng. Overview and prospect of communication-sensing-computing integration for autonomous driving in the internet of vehicles[J]. Chinese Journal of Engineering, 2023, 45(1): 137-149. doi: 10.13374/j.issn2095-9389.2022.04.16.003
Citation: MA Zhong-gui, LI Zhuo, LIANG Yan-peng. Overview and prospect of communication-sensing-computing integration for autonomous driving in the internet of vehicles[J]. Chinese Journal of Engineering, 2023, 45(1): 137-149. doi: 10.13374/j.issn2095-9389.2022.04.16.003

自動駕駛車聯網中通感算融合研究綜述與展望

doi: 10.13374/j.issn2095-9389.2022.04.16.003
基金項目: 中央高校基本科研業務費專項資金資助項目(FRF-DF-20-12, FRF-GF-18-017B)
詳細信息
    通訊作者:

    E-mail: m18715964030@163.com

  • 中圖分類號: U463.67

Overview and prospect of communication-sensing-computing integration for autonomous driving in the internet of vehicles

More Information
  • 摘要: 為了應對自動駕駛車聯網極低的通信時延、極高的可靠性、更高的傳輸速率等極致性能需求,亟需破解現有車聯網中通信、感知、計算相互割裂與獨立分治的問題,實現“云?邊?端”一體化協同感知、協同傳輸和協同決策。為此,急需對自動駕駛車聯網的通感算融合開展研究,實現三者的高效融合。首先論述了目前在通信、感知、計算融合領域的研究進展,然后給出了通感算融合網絡的定義,論述了通感助算、通算助感以及感算助通的研究進展。針對自動駕駛車聯網的應用場景,創造性地提出了“五層四面”通感算融合的網絡架構,橫向五層自下而上分別是:多元接入層、統一網絡層、多域資源層、協同服務層、管理與應用層;縱向四面分別是:通信面、感知面、算力面、智能融合面,通過五層四面的深度融合,進一步提升了自動駕駛車聯網中通感算融合網絡的性能。其次,提出了評價通感算融合網絡的性能指標體系,最后針對目前研究存在的問題以及未來發展方向給出了四點可行性建議。

     

  • 圖  1  自動駕駛車聯網中通信、感知、計算三大功能關聯關系

    Figure  1.  Relationships of communication, sensing, and computing in the internet of vehicles for autonomous driving

    圖  2  智能內生的“五層四面”通感算融合網絡架構

    Figure  2.  Intelligent endogenous architecture of the communication-sensing-computing-integrated IoV with five layers and four planes

    表  1  通感算融合的資源管理研究領域的代表性論文

    Table  1.   Representative papers in the field of communication-sensing-computing-integrated resource management

    ReferencesIntroductionThe target or related work
    [6]Summarize the standard research progress of C-V2X and the resource pool of C-V2XThe centralized and distributed resource scheduling methods under LTE-V2X and NR-V2X are described, respectively
    [7]An edge intelligence multisource data processing scheme for autonomous driving in the IoV is proposedImprove the system throughout and the accurate inference rate of neural networks
    [8]The network architecture of the Next-generation IoV is proposedContent distribution, edge caching, computing offloading, and autonomous driving technology are analyzed in detail
    [9]Compare with the delivery to the cloud, MEC reduces the transmission distance and transmission delayAn integrated platform is designed to solve the problem of resource deployment and management
    [10]A system based on MEC is constructed, and an offloading algorithm is proposedTo solve the problem of high traffic density in the Internet of vehicles, manage and control the data offloading of V2X
    [11]The mathematical model for task importance is established, and the task offloading sorting algorithm and the offloading algorithm based on Q learning are designedThe energy consumption and delay of task offloading are optimized
    [12]A distributed offloading strategy where multiple collaborative nodes have a serial offloading mode and parallel computing mode in the V2X scenario is proposedThe optimization problem of system delay minimization is established
    下載: 導出CSV

    表  2  通信和感知一體化算法部署研究的代表性論文

    Table  2.   Representative papers on communication–sensing algorithm deployment

    ReferencesIntroductionThe target or related work
    [31]Vehicle computing resources, cloud computing resources, and MEC resources are used for overall resource scheduling and allocationThe solution is feasible and efficient
    [32]Propose a vehicle-edge-cloud collaborative offloading scheme based on the particle swarm optimization algorithmObtain the optimal offloading strategy of each vehicle-edge-cloud computing node
    [33]Propose a distributed end-to-edge collaboration algorithm for the edge network of intelligent connected vehiclesImprove network resource utilization and ensure the fairness of energy consumption of a single vehicle
    [34]The concept of a computing system for an autonomous vehicle is presentedThe aim is to better process sensor data and make reliable decisions in real time
    [3536]The basic concepts of edge intelligence and existing edge intelligence systems are reviewedThe vision and mission of the Internet of vehicles and an application scenario based on 6G edge intelligence are summarized
    [37]The combination of AI processing power and computing power is applied to the problem of computing task offloading in the IoVBy applying edge intelligence technology, computing efficiency is significantly improved
    下載: 導出CSV

    表  3  通感算融合網絡性能評價體系

    Table  3.   Key performance indexes (KPIs) of communication-sensing-computing-integrated IoV

    First classificationSecondary classificationKPIs
    Communication KPIsSecurityData security
    ReliabilityBit error rate
    Network coverage
    AvailabilityTime delay
    Transmission rate
    Connectivity density
    Spectral efficiency
    Energy efficiency
    Sensing KPIsTarget localizationDetection performance
    Localization accuracy
    Target resolution
    Environmental detectionSpatial resolution
    Peak side lobe ratio
    Image entropy
    Perceived range
    Computing KPIsComputing performance indexCPU utilization
    Throughput
    MIPS
    Computing resource indexTotal computing resources
    Computing resource usage
    Computing resource utilization
    Computing service indexComputing service reliability
    Computing service efficiency
    Computing service response time
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Chen S Z, Ge Y M, Shi Y. Technology development, application and prospect of Cellular vehicle-to-everything(C-V2X). Telecommun Sci, 2022, 38(1): 1

    陳山枝, 葛雨明, 時巖. 蜂窩車聯網(C-V2X)技術發展、應用及展望. 電信科學, 2022, 38(1):1
    [2] Lang P, Tian D X. Key technologies of Internet of vehicles system towards 6G. ZTE Technology, 2021, 27(2): 13 doi: 10.12142/ZTETJ.202102004

    郎平, 田大新. 面向6G的車聯網關鍵技術. 中興通訊技術, 2021, 27(2):13 doi: 10.12142/ZTETJ.202102004
    [3] Duan X Y, Yang L, Xia S Q, et al. Technology development mode of communication/sensing/computing/ intelligence integration. Telecommun Sci,https://kns.cnki.net/kcms/detail/11.2103.TN.20220315.1013.006.html

    段向陽, 楊立, 夏樹強, 等. 通感算智一體化技術發展模式. 電信科學,https://kns.cnki.net/kcms/detail/11.2103.TN.20220315.1013.006.html
    [4] Chen X, Wei Z Q, Feng Z Y, et al. Intelligent machine communication and networking for 6G. J Internet Things, 2020, 4(1): 59 doi: 10.11959/j.issn.2096-3750.2020.00156

    陳旭, 尉志青, 馮志勇, 等. 面向6G的智能機器通信與網絡. 物聯網學報, 2020, 4(1):59 doi: 10.11959/j.issn.2096-3750.2020.00156
    [5] Li Y H. Intelligent Transportation: Major Changes Affecting Mankind in the Next 1040 Years. Beijing: People's Publishing House, 2021

    李彥宏. 智能交通: 影響人類未來10—40年的重大變革. 北京: 人民出版社, 2021
    [6] Wang J Z, Jiang H, Chen Q M, et al. Summary of research on C-V2X resource allocation method. J Terahertz Sci Electron Inf Technol, 2022, 20(1): 1 doi: 10.11805/TKYDA2021145

    王巨震, 江昊, 陳琪美, 等. C-V2X資源分配方法研究綜述. 太赫茲科學與電子信息學報, 2022, 20(1):1 doi: 10.11805/TKYDA2021145
    [7] Lü X C, Zhang C Y. Edge intelligence multi-source data processing for autonomous driving in Internet of vehicles. J Beijing Univ Posts Telecommun, 2021, 44(2): 102

    呂昕晨, 張晨宇. 面向車聯網自動駕駛的邊緣智能多源數據處理. 北京郵電大學學報, 2021, 44(2):102
    [8] Su Z, Hui Y L, Luan Tom T H, et al. The Next Generation Vehicular Networks, Modeling, Algorithm, and Applications. Switzerland: Springer Nature Switzerland AG, 2021
    [9] Cui L Z, Chen Z T, Yang S, et al. A blockchain-based containerized edge computing platform for the Internet of vehicles. IEEE Internet Things J, 2021, 8(4): 2395 doi: 10.1109/JIOT.2020.3027700
    [10] Vladyko A, Khakimov A, Muthanna A, et al. Distributed edge computing to assist ultra-low-latency VANET applications. Future Internet, 2019, 11: 128 doi: 10.3390/fi11060128
    [11] Zhang H B, Jing K L, Liu K J, et al. An offloading mechanism based on software defined network and mobile edge computing in vehicular networks. J Electron Inf Technol, 2020, 42(3): 645 doi: 10.11999/JEIT190304

    張海波, 荊昆侖, 劉開健, 等. 車聯網中一種基于軟件定義網絡與移動邊緣計算的卸載策略. 電子與信息學報, 2020, 42(3):645 doi: 10.11999/JEIT190304
    [12] Cao D, Zhang Y B, Zou D, et al. Multi-node cooperative distributed offloading strategy in V2X scenario. J Commun, 2022, 43(2): 185 doi: 10.11959/j.issn.1000-436x.2022029

    曹敦, 張應寶, 鄒電, 等. V2X多節點協同分布式卸載策略. 通信學報, 2022, 43(2):185 doi: 10.11959/j.issn.1000-436x.2022029
    [13] International Organization for Standardization. ISO/IEC 30165: 2021 Internet of Things (IoT)—Real-time IoT. Framework. Geneva: International Organization for Standardization Press, 2021
    [14] Wei Z Q, Ma H, Zhang Q X, et al. Challenge and trend of sensing, communication and computing integrated intelligent Internet of vehicles. ZTE Technology J, 2020, 26(1): 45 doi: 10.12142/ZTETJ.202001010

    尉志青, 馬昊, 張奇勛, 等. 感知?通信?計算融合的智能車聯網挑戰與趨勢. 中興通訊技術, 2020, 26(1):45 doi: 10.12142/ZTETJ.202001010
    [15] Qi Q, Chen X M, Zhong C J, et al. Integrated sensing, computation and communication in B5G cellular Internet of Things. IEEE Trans Wirel Commun, 2021, 20(1): 332 doi: 10.1109/TWC.2020.3024787
    [16] Yan S, Peng M G, Wang W B. Integration of communication, sensing and computing: The vision and key technologies of 6G. J Beijing Univ Posts Telecommun, 2021, 44(4): 1

    閆實, 彭木根, 王文博. 通信?感知?計算融合: 6G愿景與關鍵技術. 北京郵電大學學報, 2021, 44(4):1
    [17] Chen X, Feng Z Y, Wei Z Q, et al. Performance of joint sensing-communication cooperative sensing UAV network. IEEE Transactions Vehicular Technology, 2020, 69(12): 15545 doi: 10.1109/TVT.2020.3042466
    [18] Zhang J, Letaief K B. Mobile edge intelligence and computing for the Internet of vehicles. Proc IEEE, 2020, 108(2): 246 doi: 10.1109/JPROC.2019.2947490
    [19] Ni Z T, Zhang J A, Huang X J, et al. Parameter estimation and signal optimization for joint communication and radar sensing // 2020 IEEE International Conference on Communications Workshops. Beijing, 2020: 1
    [20] Kobayashi M, Hamad H, Kramer G, et al. Joint state sensing and communication over memoryless multiple access channels // 2019 IEEE International Symposium on Information Theory (ISIT). Paris, 2019: 270
    [21] Yuan X, Feng Z Y, Zhang J A, et al. Spatio-temporal power optimization for MIMO joint communication and radio sensing systems with training overhead. IEEE Trans Veh Technol, 2021, 70(1): 514 doi: 10.1109/TVT.2020.3046438
    [22] Li L X, Xie Y X, Chen Z, et al. Integrated communication and sensing technologies at THz for 6G. Radio Commun Technol, 2021, 47(6): 698 doi: 10.3969/j.issn.1003-3114.2021.06.004

    李玲香, 謝郁馨, 陳智, 等. 面向6G的太赫茲通信感知一體化. 無線電通信技術, 2021, 47(6):698 doi: 10.3969/j.issn.1003-3114.2021.06.004
    [23] Pan C K, Wang A L, Liu J J, et al. Technology analysis of information exchange based on integrated wireless sensing and communication. Radio Commun Technol, 2021, 47(6): 718 doi: 10.3969/j.issn.1003-3114.2021.06.006

    潘成康, 王愛玲, 劉建軍, 等. 通信感知一體化信息交互技術. 無線電通信技術, 2021, 47(6):718 doi: 10.3969/j.issn.1003-3114.2021.06.006
    [24] Liu F, Yuan W J, Yuan J H, et al. Radar-communication spectrum sharing and integration: Overview and prospect. J Radars, 2021, 10(3): 467 doi: 10.12000/JR20113

    劉凡, 袁偉杰, 原進宏, 等. 雷達通信頻譜共享及一體化: 綜述與展望. 雷達學報, 2021, 10(3):467 doi: 10.12000/JR20113
    [25] Zhang J A, Huang X J, Guo Y J, et al. Multibeam for joint communication and radar sensing using steerable analog antenna arrays. IEEE Trans Veh Technol, 2019, 68(1): 671 doi: 10.1109/TVT.2018.2883796
    [26] Yang J, Xu J, Li X, et al. Integrated communication and localization in millimeter-wave systems. Front Inf Technol Electron Eng, 2021, 22(4): 457 doi: 10.1631/FITEE.2000505
    [27] Xiao Z Q, Zeng Y. An overview on integrated localization and communication towards 6G. Sci China Inf Sci, 2022, 65(3): 131301 doi: 10.1007/s11432-020-3218-8
    [28] Lima C D, Belot D, Berkvens R, et al. Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges. IEEE Access, 2021, 9: 26902 doi: 10.1109/ACCESS.2021.3053486
    [29] Tian H, He S, Lin S J, et al. Survey on cooperative fusion technologies with perception, communication and control coupled in industrial Internet. J Commun, 2021, 42(10): 211

    田輝, 賀碩, 林尚靜, 等. 工業互聯網感知通信控制協同融合技術研究綜述. 通信學報, 2021, 42(10):211
    [30] Liu F, Cui Y H, Masouros C, et al. Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond. IEEE J Sel Area Commun, 2022, 40(6): 1728 doi: 10.1109/JSAC.2022.3156632
    [31] Feng L, Li W J, Lin Y X, et al. Joint computation offloading and URLLC resource allocation for collaborative MEC assisted cellular-V2X networks. IEEE Access, 2020, 8: 24914 doi: 10.1109/ACCESS.2020.2970750
    [32] Luo Y, Li H, Zhou Y L, et al. Research on the computing offloading strategy of Internet of vehicles based on vehicle-edge-cloud collaboration. Telecommun Eng,https://kns.cnki.net/kcms/detail/51.1267.tn.20211229.2152.002.html

    羅優, 李暉, 周又玲, 等. 一種基于車邊云協同的車聯網計算卸載策略. 電訊技術,https://kns.cnki.net/kcms/detail/51.1267.tn.20211229.2152.002.html
    [33] Zhu K N, Zhu Y D, Zhao Z F, et al. Distributed end-to-edge collaboration algorithm for edge network of intelligent connected vehicles. Radio Commun Technol, 2022, 48(1): 103 doi: 10.3969/j.issn.1003-3114.2022.01.013

    朱凱男, 朱永東, 趙志峰, 等. 面向智能網聯汽車邊緣網絡的分布式端?邊協同算法. 無線電通信技術, 2022, 48(1):103 doi: 10.3969/j.issn.1003-3114.2022.01.013
    [34] Liu L K, Lu S D, Zhong R, et al. Computing systems for autonomous driving: State of the art and challenges. IEEE Internet Things J, 2021, 8(8): 6469 doi: 10.1109/JIOT.2020.3043716
    [35] Gupta R, Reebadiya D, Tanwar S. 6G-enabled edge intelligence for ultra-reliable low latency applications: Vision and mission. Comput Stand Interfaces, 2021, 77: 103521 doi: 10.1016/j.csi.2021.103521
    [36] Gao Z Q, Lu X Y, Zhang R R. Edge Intelligence: Key Technologies and Landing Practices. Beijing: China Railway Publishing House, 2021

    高志強, 魯曉陽, 張榮榮. 邊緣智能: 關鍵技術與落地實踐. 北京: 中國鐵道出版社有限公司, 2021
    [37] Fan Y F, Yuan S, Cai Y, et al. Deep reinforcement learning-based collaborative computation offloading scheme in vehicular edge computing. Comput Sci, 2021, 48(5): 270 doi: 10.11896/jsjkx.201000005

    范艷芳, 袁爽, 蔡英, 等. 車載邊緣計算中基于深度強化學習的協同計算卸載方案. 計算機科學, 2021, 48(5):270 doi: 10.11896/jsjkx.201000005
    [38] Guo H Z, Zhou X Y, Liua J J, et al. Vehicular intelligence in 6G: Networking, communications, and computing. Veh Commun, 2022, 33: 100399
    [39] Liu L, Chen C, Feng J, et al. A survey of computation offloading in vehicular edge computing networks. Acta Electron Sin, 2021, 49(5): 861 doi: 10.12263/DZXB.20200936

    劉雷, 陳晨, 馮杰. 車載邊緣計算卸載技術研究綜述. 電子學報, 2021, 49(5):861 doi: 10.12263/DZXB.20200936
    [40] Chen M Z, Yang Z H, Saad W, et al. A joint learning and communications framework for federated learning over wireless networks. IEEE Trans Wirel Commun, 2021, 20(1): 269 doi: 10.1109/TWC.2020.3024629
    [41] Hu Q, Gao F F, Zhang H, et al. Deep learning for channel estimation: interpretation, performance, and comparison. IEEE Trans Wirel Commun, 2021, 20(4): 2398 doi: 10.1109/TWC.2020.3042074
    [42] China Mobile Communications Research Institute, Huawei Technologies. Hashrate Awareness Network Technology White Paper [DB/OL].https://www.txrjy.com/thread-1236504-1-1.html, 2019

    中國移動通信研究院, 華為技術有限公司. 算力感知網絡技術白皮書[DB/OL].https://www.txrjy.com/thread-1236504-1-1.html, 2019
    [43] Yang Y. Multi-tier computing networks for intelligent IoT. Nat Electron, 2019, 2(1): 4 doi: 10.1038/s41928-018-0195-9
    [44] Wang X C, Wu B, Sun Y Z, et al. Internet of vehicles resource management based on deep reinforcement learning. Ind Control Comput, 2021, 34(9): 31 doi: 10.3969/j.issn.1001-182X.2021.09.012

    王曉昌, 吳璠, 孫彥贊, 等. 基于深度強化學習的車聯網資源管理. 工業控制計算機, 2021, 34(9):31 doi: 10.3969/j.issn.1001-182X.2021.09.012
    [45] Lü P, Xu J, Li T S, et al. Survey on edge computing technology for autonomous driving. J Commun, 2021, 42(3): 190

    呂品, 許嘉, 李陶深, 等. 面向自動駕駛的邊緣計算技術研究綜述. 通信學報, 2021, 42(3):190
    [46] Wang T, Shen X W, Luo H, et al. Research progress of trusted sensor-cloud based on fog computing. J Commun, 2019, 40(3): 170 doi: 10.11959/j.issn.1000-436x.2019068

    王田, 沈雪微, 羅皓, 等. 基于霧計算的可信傳感云研究進展. 通信學報, 2019, 40(3):170 doi: 10.11959/j.issn.1000-436x.2019068
    [47] Gao Y J, Liu L, Hu B X, et al. Federated region-learning for environment sensing in edge computing system. IEEE Trans Netw Sci Eng, 2020, 7(4): 2192 doi: 10.1109/TNSE.2020.3016035
    [48] Chen Y Q, Ai F. The collaborative awareness data model based on context awareness computing. Electron Des Eng, 2021, 29(18): 49

    陳育青, 艾飛. 基于上下文感知計算的協同感知數據模型. 電子設計工程, 2021, 29(18):49
    [49] Mohamed N, Al-Jaroodi J, Jawhar I, et al. UAVFog: A UAV-based fog computing for Internet of Things // 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation. San Francisco, 2017: 1
    [50] Leng Y, Zhao L S. Novel design of intelligent internet-of-vehicles management system based on cloud-computing and Internet-of-Things // Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. Harbin, 2011: 3190
    [51] Wang K, Wang X F, Liu X, et al. Task offloading strategy based on reinforcement learning computing in edge computing architecture of Internet of vehicles. IEEE Access, 2020, 8: 173779 doi: 10.1109/ACCESS.2020.3023939
    [52] Yi C Y, Huang S W, Cai J. Joint resource allocation for device-to-device communication assisted fog computing. IEEE Trans Mob Comput, 2021, 20(3): 1076 doi: 10.1109/TMC.2019.2952354
    [53] You M L, Zheng G, Chen T R, et al. Delay guaranteed joint user association and channel allocation for fog radio access networks. IEEE Trans Wirel Commun, 2021, 20(6): 3723 doi: 10.1109/TWC.2021.3053155
    [54] Sun Y J, Wang H, Zhang C X. Balanced computing offloading for selfish IoT devices in fog computing. IEEE Access, 2022, 10(2): 30890
    [55] Zhang Y Y, Zhang S, Zhang Y, et al. Multi-modality fusion perception and computing in autonomous driving. J Comput Res Dev, 2020, 57(9): 1781 doi: 10.7544/issn1000-1239.2020.20200255

    張燕詠, 張莎, 張昱, 等. 基于多模態融合的自動駕駛感知及計算. 計算機研究與發展, 2020, 57(9):1781 doi: 10.7544/issn1000-1239.2020.20200255
    [56] Shen L. Design and Implementation of Cooperative Sensing and Control Through Fog Computing [Dissertation]. Beijing: Beijing University of Posts and Telecommunications, 2018

    沈龍. 基于霧計算的協作感知與控制機制的設計與實現[學位論文]. 北京: 北京郵電大學, 2018
    [57] Hussien D A, El-Bahnasawy N A, El-Sisi A, et al. Mobility swapping optimization with location-aware fog positioning algorithm (LAFPA) // 2021 International Conference on Electronic Engineering (ICEEM). Menouf, 2021: 1
    [58] Kim S, Park S, Lee S H, et al. Smart parking with learning-aided user activity sensing based on edge computing // 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). Las Vegas, 2021: 1
    [59] Qi Y L, Zhou Y Q, Pan Z G, et al. Crowd-sensing assisted vehicular distributed computing for HD map update // IEEE International Conference on Communications. Montreal, 2021: 1
    [60] Wu Y F, Suo Y N, Yu F X, et al. A utility-based subcontract method for sensing task in mobile crowd sensing. IEEE Trans Ind Inform, 2021, PP(99): 1
    [61] Pan C K, Wang A L, Liu J J, et al. Technology analysis of integration of wireless sensing and communication. Radio Commun Technol, 2021, 47(2): 143

    潘成康, 王愛玲, 劉建軍, 等. 無線感知通信一體化關鍵技術分析. 無線電通信技術, 2021, 47(2):143
    [62] Qin Z K, Guo L, Ma Y, et al. Overview of lane-keeping assist system based on human-machine cooperative control. Chin J Eng, 2021, 43(3): 355

    秦增科, 郭烈, 馬躍, 等. 基于人機協同的車道保持輔助系統研究進展. 工程科學學報, 2021, 43(3):355
    [63] Duan X Y, Yang L, Xia S Q, et al. Research on the technology development mode of communication/sensing/computing/intelligence integration on the road from 5G-Advanced towards 6G system. Telecommun Sci, https://kns.cnki.net/kcms/detail/11.2103.TN.20220315.1013.006.html

    段向陽, 楊立, 夏樹強, 等. 面向6G通感算智一體化技術發展模式探究. 電信科學.https://kns.cnki.net/kcms/detail/11.2103.TN.20220315.1013.006.html
    [64] Ma Z G, Ni R Y, Yu K H. Recent advances, key techniques and future challenges of knowledge graph. Chin J Eng, 2020, 42(10): 1254

    馬忠貴, 倪潤宇, 余開航. 知識圖譜的最新進展、關鍵技術和挑戰. 工程科學學報, 2020, 42(10):1254
    [65] Jiang W J, Wang A L, Wei Z Q, et al. Improve sensing and communication performance of UAV via integrated sensing and communication // 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, 2021: 644
    [66] Zhang Q X, Wang X N, Li Z H, et al. Design and performance evaluation of joint sensing and communication integrated system for 5G mmWave enabled CAVs. IEEE J Sel Top Signal Process, 2021, 15(6): 1500 doi: 10.1109/JSTSP.2021.3109666
    [67] Bai G X, Meng Y, Liu L, et al. Current status of path tracking control of unmanned driving vehicles. Chin J Eng, 2021, 43(4): 475

    白國星, 孟宇, 劉立, 等. 無人駕駛車輛路徑跟蹤控制研究現狀. 工程科學學報, 2021, 43(4):475
  • 加載中
圖(2) / 表(3)
計量
  • 文章訪問數:  730
  • HTML全文瀏覽量:  799
  • PDF下載量:  219
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-04-16
  • 網絡出版日期:  2022-08-08
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回