<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

原煤彈塑性局部化損傷本構模型

Research on the elastoplastic localized damage constitutive model of raw coal

  • 摘要: 隨著人類能源和資源剛性需求的增加,必將促使礦產資源開采進一步朝地球深部發展. 深部工程高地應力賦存條件導致巖體表現出明顯的非線性力學響應. 由于煤巖的非均質性,外部荷載作用下其內部微裂紋會逐漸萌生、擴展,并聚合成局部宏觀裂紋,形成局部剪切帶,表現出應變局部化現象,最終導致試樣失穩破壞. 且原煤的三軸壓縮試驗結果表明:低圍壓條件下峰后出現明顯的應力跌落,表現出脆性破壞特征;隨著圍巖的增加,應力跌落現象逐漸放緩,表現出延性變形行為. 基于煤巖的損傷破裂內在物理機制,如何在本構尺度準確描述巖石的脆延轉變現象仍需進一步研究. 傳統模型忽略了局部剪切區域內與區域外之間的關系以及局部區域的力學特征,導致模擬結果不能有效地反映巖石材料應變局部化破壞特征. 正確描述深部巖體災變過程中局部化破壞問題是工程結構設計的關鍵. 為此,基于原煤三軸壓縮力學響應特征,考慮局部化損傷效應,提出適應于原煤的Mohr–Coulomb型屈服準則和損傷準則,建立了原煤彈塑性局部化損傷本構模型. 通過能量等效原理,建立局部帶內外力學變量與宏觀力學響應之間聯系. 采用損傷變量作為內在驅動變量控制屈服面的膨脹和收縮,描述煤巖的峰前應變硬化和峰后應變軟化行為. 并采用指數函數形式損傷準則描述巖石斷裂破壞過程中損傷演化行為,建立了局部帶尺寸與損傷變量之間函數關系. 通過數值模擬結果與原煤三軸壓縮試驗數據對比論證提出模型的有效性. 結果表明:該模型能夠較好地捕捉原煤不同圍壓加載過程中主要的非線性變形特征,且峰后應變軟化現象是局部化損傷快速增加所致. 通過控制損傷演化速率和局部化損傷程度,本構模擬結果可以較好地再現原煤的脆延轉變行為,且最大損傷水平隨著圍壓的增加呈現指數衰減. 因此,本文提出的本構模型能夠反映原煤的局部化變形破壞力學特征,進一步豐富了巖石損傷力學理論,相關研究工作可為深部巖石工程理論模型研究提供新的研究思路.

     

    Abstract: The growing need for energy and resources is driving the search and extraction of mineral resources from deeper earth layers, resulting in significant nonlinear mechanical responses in rock masses under high ground stress. The heterogeneous nature of raw coal leads to the development of internal microcracks, which evolve into larger, visible cracks when external forces are applied. This process involves the initiation, propagation, and coalescence of internal microcracks, causing strain localization phenomena and creating localized shear zones. Such developments can lead to instability and failure of the coal samples. Triaxial compression tests on raw coal indicate a substantial drop in stress after reaching peak strength, demonstrating brittle failure characteristics under low confining pressure. As the confining pressure increases, this drop in stress gradually slows, exhibiting a shift to ductile deformation. Further research is needed at the constitutive scale to accurately describe the brittle–ductile transition in raw coal, focusing on the intrinsic physical mechanisms of coal rock damage and failure. Conventional models often overlook the relationship between the local shear zone and their surroundings, as well as the mechanical properties of these zones. As a result, simulation results may not accurately reflect the localized failure characteristics of rock materials. Recognizing localized failure in deep rock masses is crucial for engineering structural designs. This paper introduces a new elastoplastic localized damage constitutive model for raw coal based on the Mohr–Coulomb (MC) yield criterion and the mechanical behavior observed in triaxial compression mechanical responses of the rock. By applying energy equivalence principles, we can establish a relationship between internal and external mechanical variables and overall macroscopic mechanical responses. Damage variables, as an intrinsic driving variable, are used to control the expansion and contraction of the yield surface, describing both prepeak strain hardening and postpeak strain softening behaviors in raw coal. An exponential damage criterion is used to represent damage progression during rock fracturing, linking the size of localized bands to damage variables. The effectiveness of the proposed model is demonstrated by comparing numerical simulations with triaxial compression test data of raw coal. The results demonstrate that the model can capture the primary nonlinear characteristics of raw coal during triaxial compression tests. The postpeak strain softening is attributed to the rapid increase in localized damage. By controlling the evolution rate and extent of damage, the constitutive simulation results can effectively replicate the brittle–ductile transition behavior of raw coal, with the maximum level of damage decreasing exponentially as the confining pressure increases. The proposed constitutive model effectively captures the main mechanical features of localized deformation and failure of the raw coal. This enriches understanding of rock damage mechanics and introduces a fresh perspective for theoretical models in deep rock engineering.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com