<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

殼聚糖基絮凝劑絮凝高嶺土的動力學及絮體結構

Kinetics of flocculation of kaolinite by chitosan-based flocculants and the floc structure

  • 摘要: 開發多活性位點綠色高效絮凝劑對構建低絮凝劑用量的高效固液分離過程、實現選礦廢水高效處理與循環回用具有重要意義. 本文為考察天然陽離子型線性高分子殼聚糖接枝陽離子型聚丙烯酰胺(Chi-g-CPAM)的絮凝性能,改變引發劑質量分數將殼聚糖、丙烯酰胺和二甲基二烯丙基氯化銨通過紫外引發水溶液聚合法進行接枝共聚,合成了分子結構不同的Chi-g-CPAM,使用石英晶體微天平(QCM-D)研究了其在SiO2芯片表面的吸附行為和后繼原位絮凝高嶺土的動力學,分析了絮體結構變化;并采用動力學方程擬合以揭示絮凝機理;最后進行了絮凝劑沉降性能試驗. 結果表明,長支鏈可增強絮凝劑對高嶺土的架橋網捕作用,加快沉降;接枝率越高則有助于降低上清液濁度. 引發劑質量分數為0.10%所合成的Chi-g-CPAM支鏈相對多而長,在SiO2芯片表面平衡吸附量最大,為(–11.68±0.40) Hz,吸附的第Ⅰ、Ⅱ階段K值分別為0.18140.5054,吸附構象趨于向外伸展,后繼所絮凝高嶺土量少且絮體結構疏松,架橋、網捕和電中和作用協同使其在沉降試驗中表現的沉降速率最大(12.18 m·h–1),上清液濁度最低(13 NTU). 支鏈多而長的Chi-g-CPAM絮凝高嶺土的過程復雜,準一級、準二級動力學和Elovich方程對其擬合效果均較好. 引發劑質量分數為0.15%和0.05%時,對應所合成支鏈多而短、支鏈少而短的Chi-g-CPAM在SiO2表面呈扁平的“列車式”吸附構象,架橋和網捕能力低,絮凝沉降性能差. 多活性官能團絮凝劑的分子結構影響其在礦物表面的吸附構象,是決定其絮凝性能的關鍵因素之一. 本研究對選礦大分子藥劑的分子結構設計具有重要意義.

     

    Abstract: Solid–liquid separation is a critical component in treating mineral processing wastewater. Its effectiveness primarily hinges on the disruption of colloidal stability in the wastewater. Flocculants play a key role in destabilizing and dehydrating these colloids. Polyacrylamide is widely utilized as a flocculant in mineral processing plants. However, it requires large dosages and contains residual toxic monomers. Developing green, efficient flocculants with multiple active sites is vital for creating an efficient solid–liquid separation process with a low dosage of flocculants, enabling efficient treatment and recycling of mineral processing wastewater. In this work, acrylamide (AM) and dimethyl diallyl ammonium chloride (DMDAAC) are grafted onto the chitosan molecular chain through UV-initiated polymerization, obtaining chitosan-grafted-cationic polyacrylamide (Chi-g-CPAM) with varying molecular structures by modifying the mass fraction of initiator. The chemical structure and crystallinity of the grafted copolymer are characterized using Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H NMR), and X-ray diffraction. Chi-g-CPAM’s flocculation performance on kaolinite suspensions is evaluated through settling tests. The adsorption behavior of Chi-g-CPAM on silica surfaces and the flocculation kinetics of kaolinite are investigated using quartz crystal microbalance with dissipation. The adsorption morphology of Chi-g-CPAM on the SiO2 chip surface, floc structure, and flocculation mechanism are analyzed. The analysis reveals that long branched chains enhance Chi-g-CPAM’s bridging effect on kaolinite, accelerating settling. The abundant branched chains provide substantial positive sites, reducing supernatant turbidity, while short-branched chains result in a “train-like” adsorption conformation of flocculants on kaolinite surfaces, weakening the bridging effect. The grafting ratio of Chi-g-CPAM reaches 580.0% at an initiator mass fraction of 0.10%, with numerous long-branched chains. QCM-D measurements indicate that Chi-g-CPAM with these chains exhibits the maximum equilibrium adsorption capacity of (?11.68±0.40) Hz. Initially, a smaller fitting slope of 0.1814 increases to 0.5054 after 509 s, indicating an outward extending adsorption conformation. The flocculation of kaolinite by Chi-g-CPAM is minimal, forming relatively loose flocs. Under the action of Chi-g-CPAM with numerous and long branched chains, the flocculation process is more complicated, as evidenced by the high degree of fit observed in the pseudo-first-order, pseudo-second-order, and Elovich equations. The settling test results reveal that kaolinite suspensions treated by the above flocculant achieve a settling rate of 12.18 m·h–1, the highest among all tested flocculants. Additionally, the turbidity of the supernatant measures just 13 nephelometric turbidity units, indicating excellent flocculation performance. This is attributed to the synergistic interactions of charge neutralization, bridging, and net-trapping. At initiator mass fraction of 0.15% and 0.05%, the synthesized Chi-g-CPAM with short branched chains exhibits a planar "train-like" adsorption conformation on the SiO2 surface, which reduces bridging and net-trapping capacity, leading to poor flocculation performance. The molecular structure of multi-active functional flocculants affects their adsorption conformation on mineral surfaces, a critical factor in determining their flocculation performance. The findings of this study offer valuable insights into the molecular structure design of macromolecular agents for mineral processing.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com