<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

基于自組織聚類的多機協同編批方法

Multi-aircraft collaborative batching method based on self-organizing clustering

  • 摘要: 針對多機協同對抗過程中的編批問題,設計了一種基于改進自組織迭代聚類的多機協同編批方法. 該方法解決了傳統自組織迭代聚類算法中人工參數設置不便利不直觀的問題,能夠在給定少數直觀超參數條件下,使多機自主調整聚類過程中所涉及的參數,最終迭代出合理的編批結果. 首先對高維多機態勢信息進行標準化和主成分分析處理,從而確認新的向量空間;然后引入密度聚類中的鄰域密度判別思想對傳統自組織迭代聚類方法的合并和分裂操作進行改進,優化并減少了傳統方法進行分裂和合并操作所涉及的人工參數,提升了執行編批聚類任務的智能自主性;最后選取算法評價指標,使用所提算法以及傳統算法對多個人工合成數據以及實際想定場景進行聚類測試并對測試結果進行評價. 人工合成數據仿真表明改進自組織迭代聚類算法在優化聚類過程中的人工參數后仍與原始算法表現出相當的性能,實際想定場景的編批結果進一步說明了改進自組織迭代聚類算法在具體應用場景中的有效性以及在未來實際場景中的實用性.

     

    Abstract: This article addresses the bathing problem in multi-machine collaborative operations, proposing a method based on improved self-organizing iterative clustering. This approach circumvents the issues of traditional manual parameter setting in the self-organizing iterative clustering algorithm that is often inconvenient and non-intuitive. The proposed method allows multiple machines to autonomously adjust the parameters involved in the clustering process, given a small number of intuitive hyperparameters. The ultimate goal is to iterate toward reasonable editing results. Initially, this article focuses on selecting feature vectors for the multi-machine collaborative confrontation situation. It applies standardization and principal component analysis to high-dimensional multi-machine situation information to confirm the new vector space. This space mainly encompasses position information in three dimensions and speed information. Subsequently, the paper introduces the concept of neighborhood density discrimination from density clustering. This improves the merging and splitting operations of the traditional self-organizing iterative clustering method. It optimizes and reduces the artificial parameters involved in these operations, enhancing the intelligent autonomy for batch clustering tasks. Before optimization, artificial parameters primarily include the number of expected clusters, minimum number of points within a class, number of iterations, upper limit of standard deviation that limits data distribution within a class, and an allowable shortest distance indicator between classes. Post optimization, the artificial parameters are limited to the expected cluster quantity, minimum number of points, and the number of iterations within a single classification. These optimized parameters are relatively intuitive, and the algorithm output does not strongly correlate with the input parameters. Ultimately, the paper selects algorithm evaluation indicators, including Dunn, Davies–Bouldin, silhouette coefficient, and Calinski–Harabasz. It uses these to evaluate the proposed algorithms ISODATA+ and K-MEANS+, along with the original ISODATA algorithm, against multiple artificially synthesized data sets (completely random data, Gaussian-generated data, and sin-type data) and real-world scenarios. The experimental results suggest that while KMEANS+ shows significant advantages owing to multiple manually set hyperparameters, it requires constant debugging when adjusting parameters, which increases the complexity of the task. Compared with the original self-organizing iterative algorithm ISODATA, statistical results show that the improved algorithm has equivalent capabilities to the original algorithm. This demonstrates that the ISODATA+ algorithm maintains good clustering capabilities even after removing some artificial parameters. The batching results from actual scenario tests further illustrate the effectiveness of the improved self-organizing iterative clustering algorithm in specific application scenarios, demonstrating its practicability for future real-world applications.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com