<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

多無人艇固定時間自適應分布式協同編隊控制

Fixed-time adaptive distributed cooperative formation control for multiple unmanned surface vessels

  • 摘要: 針對在實際海洋環境中由復雜惡劣海況導致的局部通訊條件下多無人艇協同編隊控制問題,本文提出一種固定時間自適應分布式控制策略. 首先,考慮只有部分跟隨無人艇能夠直接獲取虛擬領航者的狀態信息,為每艘跟隨無人艇設計固定時間分布式觀測器,在固定時間內實現對虛擬領航者位置和速度的估計. 然后,在估計信息的基礎上,采用反步法為每艘跟隨無人艇設計固定時間自適應局部控制器,在固定時間內實現對由虛擬領航者產生的期望軌跡的跟蹤. 特別地,在局部控制器設計過程中,采用參數自適應機制對模型不確定和外界擾動進行補償,在保證控制精度的同時避免抖振現象. 同時,本文給出了所提出的固定時間觀測器與局部控制器的穩定性分析,經數學證明,所提出的觀測器和控制器能夠保證每艘跟隨無人艇均能夠在固定時間內完成對虛擬領航者的位置和速度的估計并使位置和速度跟蹤誤差在固定時間內收斂至零的鄰域內. 最后,設計對比仿真,將本文所提控制策略和目前常用的PD控制器的控制性能進行對比,仿真結果表明所提出的控制策略在控制精度和收斂速度上具有更優越的表現.

     

    Abstract: Compared with a single unmanned surface vessel (USV), multiple USVs have the advantages of strong maneuverability, high reliability, and low cost. Multiple USVs have potential oceanic transportation, resource exploration, and maritime rescue applications. However, cooperative formation control of multiple USVs is a significant yet challenging problem. The main difficulties arise from the limited communication and the existence of model uncertainties and external perturbations. Therefore, this paper proposes a fixed-time adaptive distributed control strategy consisting of a fixed-time distributed observer and local controller for cooperative formation control of multiple USVs under local communication in complex marine environment. First, a fixed-time distributed observer is constructed for each follower USV to estimate the virtual leader’s position and velocity in fixed time by considering that only a portion of follower USVs can directly access the state information from the virtual leader. Based on the estimated information, a fixed-time local controller is designed for each follower USV to track the desired trajectory generated by the virtual leader in a fixed time using the backstepping method. In particular, in the local controller design process, a parameter adaptive mechanism is introduced to estimate the square of the upper bound of the lumped disturbance term, including model uncertainty and external disturbance to compensate for them. Thus, the proposed controller is smooth to guarantee the control accuracy, and the chattering phenomenon can be avoided simultaneously. Stability analysis of the proposed fixed-time observer and local controller is also presented. Mathematical proofs show that the proposed observer and controller can ensure that each USV can complete the position estimation and virtual leader velocity in a fixed time, thereby making the tracking error converge to the zero neighborhood in a fixed time. Finally, USVs with the proposed control strategy can follow the virtual leader and maintain the formation as shown in the simulation. Additionally, a comparative simulation is designed, where the control performance of the proposed strategy is compared with that of the commonly used PD controller under the same condition. The simulation results show that the proposed controller has superior control accuracy and convergence rate in controlling the USVs to track the desired position and velocity of the demanded formation. Moreover, the chattering phenomenon of the control inputs is significantly suppressed.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com