<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

生物質材料炭化的研究進展及其應用展望

Research progress and application prospects of the carbonization of biomass materials

  • 摘要: 生物質屬于可再生資源,在我國含量豐富,生物質材料炭化后的產物在儲能、吸附等領域得到了廣泛應用. 研究生物質材料的炭化過程,有利于生物質炭的有效利用. 總結了生物質材料炭化過程中,生物質的種類和炭化條件(包括炭化溫度、預處理等)對炭化產物中碳的結構、形態、性質的影響,期望為生物質炭化產物的有效利用提供理論基礎. 同時總結了在催化劑作用下,利用生物質材料炭化來制備碳納米管,并分析了生物質材料中木質素和纖維素等組分對碳納米管制備的影響. 在此基礎上,展望了生物質材料在含碳耐火材料中的應用前景,以期為制備低成本和高性能的新型含碳耐火材料提供思路.

     

    Abstract: Biomass is a renewable energy resource with rich content in China. The products of the carbonization of biomass materials have been widely used in energy storage, adsorption materials, and other fields. Studying the carbonization process of biomass materials is crucial for the efficient use of biochar. This article summarizes the effects of biomass types and carbonization conditions (such as carbonization temperature and pretreatment) on the structure, morphology, and properties of carbon in carbonization products. The aim is to provide a theoretical foundation for the effective use of biomass carbonization products. Various biomass materials and biochar can be prepared after treatment. The contents of cellulose, hemicellulose, lignin, and ash in different types of biomass materials vary greatly, and the carbon content, carbon structure, morphology, and properties of the products after carbonization differ. Therefore, selecting appropriate biomass materials based on usage requirements is essential. The carbonization temperature of biomass materials plays an important role in the pyrolysis of biomass. As the carbonization temperature increases, cellulose, hemicellulose, and lignin gradually decompose into gases with small molecules. Furthermore, as the carbonization temperature continues to increase, the internal structure of biomass carbon continues to rearrange, forming a dense aromatic carbon network plane of macromolecules, which increases the graphitization degree of biomass carbon. Additionally, the temperature greatly affects the structure and amount of the products of biomass carbonization. The activation of biomass materials further enhances the specific surface area and adjusts the pore structure of biomass carbon. Chemical activators such as acids, alkalis, and salts are commonly used and have their own advantages and disadvantages. Appropriate activators should be selected by a comprehensive consideration of usage requirements to activate the biomass. This article summarizes the preparation of carbon nanotubes by the carbonization of biomass materials through the template and chemical vapor deposition methods under the action of a catalyst. Further, the influence of components such as lignin and cellulose in biomass materials on the preparation of carbon nanotubes is analyzed. Cellulose in biomass materials has a small molecular weight and is easy to pyrolyze, resulting in gases with smaller molecules. However, lignin has a large molecular weight, is difficult to decompose, and produces less amount of small molecular gas. Therefore, biomass materials with high cellulose content are found to facilitate the preparation of carbon nanotubes. On this basis, the application prospects of biomass materials in carbon-containing refractories have been considered and examined to provide ideas for the preparation of new carbon-containing refractories with low cost and good properties.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com