<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

冷卻速度對Zn—5Al—0.1RE—xSi合金顯微組織及耐蝕性能的影響

Effect of cooling rate on the microstructure and corrosion properties of Zn-5Al-0.1RE-xSi alloys

  • 摘要: 運用掃描電子顯微鏡/能譜儀、X射線衍射、鹽霧實驗、電極化曲線等手段,研究冷卻速度和Si對Zn-5Al-0.1RE合金組織及耐蝕性能的影響.結果表明,Zn-5Al-0.1RE-xSi合金由先析出的η-Zn和η-Zn+α-Al共晶組織組成,前者均勻分布在相鄰的η-Zn+α-Al共晶胞的邊界上.降低冷卻速度和Si的加入,均使Zn-5Al-0.1RE-xSi合金單位面積的晶粒增大,晶界減少,合金耐蝕性能提高.Zn-5Al-0.1RE-xSi合金耐蝕性能的差異與合金凝固組織及合金腐蝕產物中Zn5(OH)8Cl2·H2O和ZnO的相對量有關.

     

    Abstract: The effects of cooling rate and Si on the microstructure and corrosion property of the Zn-5Al-0.1 RE alloy were studied by scanning electron microscopy-energy dispersive spectrometry, X-ray diffraction, neutral salt spray test and polarization curves. The results show that Zn-5Al-0.1RE-xSi alloys are composed of primary η-Zn phase and η-Zn + α-Al eutectic structure, and the former is uniformly distributed on the adjacent η-Zn + α-Al entectic cells. The reduction of cooling rate and the addition of Si make the grain size increase and the boundary area per unit alloy area decrease; at the same time, the corrosion resistance is improved. The corrosion resistance of the Zn-5Al-0.1 RE-xSi alloys is dependent on their solidification structure and the relative amount of corrosion products including Zn5(OH)8Cl2·H20 and ZnO.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com