<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

基于模糊匹配的板坯入庫優化決策問題模型及求解

Model and algorithm for the slab location optimization decision problem based on fuzzy matching

  • 摘要: 針對板坯入庫優化決策問題,采用隸屬度函數表示待入庫板坯長度、寬度、厚度與各庫位已存板坯對應屬性的匹配程度,建立了板坯入庫模型.針對問題特征,借鑒遺傳算法的交叉和變異操作,設計了一種混合離散粒子群算法(DPSO-CM)進行求解.基于企業實際生產數據的仿真實驗驗證了模型和算法的可行性和有效性.

     

    Abstract: For solving the slab location decision problem with hybrid stowage, a slab location model using a membership function was built to express the level of matching on the related attributes of length, width and thickness between the storing slabs and stored slabs in a warehouse. According to the characteristics of the problem, a hybrid discrete particle swarm algorithm, called DPSO-MC, was proposed based on crossover and mutation in genetic algorithms. Experimental results on a real case of a steel plant demonstrate that the model and algorithm are feasible and effective.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com