<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

基于改進的局部切空間排列算法的多姿態人耳識別

Multi-pose ear recognition base on a local tangent space alignment algorithm

  • 摘要: 針對局部切空間排列算法用于圖像識別存在的問題,對鄰域選取策略加以改進,提出了一種基于自適應鄰域選取策略的局部切空間排列算法,并用于人耳圖像特征的提取.實驗結果表明:當姿態發生較大變化時,這種新的人耳識別方法能夠取得明顯優于傳統線性方法的識別結果,是一種有效的多姿態識別方法.

     

    Abstract: As an effective nonlinear dimensionality reduction tool, the local tangent space alignment algorithm (LTSA) can obtain the global low-dimensional embedded coordinates of sampled data from a high-dimensional space. Introduced into multi-pose ear image recognition, LTSA has to improve to solve its problems in image recognition. An adaptive neighborhood selection strategy is proposed and a novel multi-pose ear recognition method based on this improved LTSA is present. Experimental results illustrate that it is an effective multi-pose image recognition method which can obtain better recognition rates than the traditional linear ones when the pose varies a lot

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com