<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

熱軋帶鋼軋制力模型自學習算法優化

Self-learning algorithm optimization for the rolling force model of hot strips

  • 摘要: 根據軋制數量、測量數據質量和軋制力預報誤差的影響,建立了軋制力自學習速度因子優化模型.在長期自學習的判定條件中綜合考慮了規格分檔的變化以及厚度、寬度的改變量,減少了換規格的次數.長期自學習系數計算時利用了從前一塊鋼數據中分離出的設備狀態信息,從而改善了模型自學習的連續性.離線仿真分析結果表明,軋制力計算精度相對于自學習算法優化前有較大的提高.

     

    Abstract: The influences of the number of rolled strips,the quality of measured data and the tolerance of rolling force prediction were taken into account for building a self-learning speed optimization model of rolling force.The grades and values of thickness and width were considered in the determinant condition of long-term self-learning to reduce the frequency of size change.The information of equipment states which was separated from the data of the last strip was used into the calculation of long-term self-learning factor to improve the continuity of the self-learning model.Offline simulation results show that the accuracy of the rolling force model is improved after the self-learning algorithm is optimized.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com