<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

基于支持向量機挖掘不一致事例隱含的異常信息

Mining Uncommon Information from Inconsistent Samples Based on Support Vector Machine

  • 摘要: 基于支持向量機,提出一種挖掘粗集信息表中不一致事例背后隱藏某種有價值信息的算法,即不一致是由于錯誤引起,還是由于誤差引起,抑或是由于缺少屬性引起,并提出一些排除不一致的方案和算法.

     

    Abstract: In current researches of knowledge discovery, inconsistent examples in a decision table are not be analyzed. It is just the place that contradictions would hide interesting and valuable information. An algorithm based on the support vector machine is proposed to mine kinds of information which hide in inconsistent examples, i.e., to decide whether inconsistency is caused by mistake, the error between a computed or measured value and a true or theoretically correct value, or missing attributes. Some methods and algorithms which eliminate the inconsistency are presented.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com