<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

基于統計空間映射的自學習模式識別方法

Self-Learning Pattern Recognition Method Base on the Statistical Space Mapping

  • 摘要: 針對生產工況實測數據不能覆蓋整個數據空間的現象,提出了一種基于統計空間映射的自學習模式識別方法.通過實測數據的仿真實驗驗證了該方法的有效性.

     

    Abstract: Base on the statistical space mapping a self-learning method was proposed, which can overcome the shortcoming that the measured work-state data can not cover all the data space. Simulating experiment at results for the measured work-state data show its availability.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com