<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

一種改進的非支配排序遺傳算法

An Improved Evolutionary Algorithm for Multi-objective Optimization

  • 摘要: 為克服非支配排序遺傳算法計算復雜度高,未采用精英策略,需要特別指定共享半徑的缺點,提出了一種改進的非支配排序遺傳算法.通過實驗驗證,該算法在幾個給定的函數優化時都能取得比較好的結果.

     

    Abstract: Multi-objective evolutionary algorithms which use non-dominated sorting and sharing have been mainly criticized for the problems, (1) O(mN3) computational complexity (where m is the number of objectives and n is the population size), (2) non-elitism approach, and (3) the need for specifying a sharing parameter. This paper suggests a non-dominated sorting based the multi-objective evolutionary algorithm INSGA which alleviates all the above three difficulties. Simulation results on five difficult test problems show that the proposed INSGA is able to find much better spread of solutions in all problems compared to NSGA.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com