<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

高爐爐況判斷神經網絡專家系統

Neural Network Expert System of Forecasting Blast Furnace 0perational Conditions

  • 摘要: 在深入分析高爐冶煉特點的基礎上,提出泛化特性和自適應特性是高爐爐況判斷系統穩定有效運行的2個重要特性.設計了增進系統泛化特性和自適應特性的方案,并相應開發出一套爐況判斷專家系統.開發的系統在高爐上運行獲得了滿意效果.

     

    Abstract: Based on deeply-analyzing the characteristics of iron-making process, it is presented that gen-eralization and self-adaptation of the BF judgement systems are two important factors for maintaining the sta-bility and efficiency of neural network expert system. The strategy for improving these two features has been proposed and a new developed system has been proved to be satisfactory in the on-site blast furnace operation.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com