<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

神經網絡應用于燒結礦質量在線推斷

On-line Inference of Sintering Quality via Neural Networks

  • 摘要: 針對燒結過程生產實際,運用神經網絡中的BP學習算法設計了分類器,用于在線推斷燒結礦的質量。為了加快BP學習算法的收斂速度,采用了自適應變步長學習算法。實驗結果表明,由此建立的燒結過程神經網絡質量預報模型,預報正確率高,具有很好的泛化能力。

     

    Abstract: Presents a new method of on-line inference of sintering quality. Neural networks to build the sinternig quality inference model are used. To speed the learning, a fast BP learning algorithm with adaptive variable step size via linear reinforcement is presented.The experiment result is satisftory, and this method may be used widely in other complicated production proasses.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com