<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

基于神經網絡的自適應故障模式分類方法

Adaptive Failure Pattern Classification Method based on Neural Networks

  • 摘要: 在深入研究APT-2神經網絡結構的基礎上,提出了一種基于神經網絡的自適應故障模式分類方法,并應用在軸承故障診斷中,結果表明:該方法對軸承故障模式具有自學習、快速穩定的識別能力。

     

    Abstract: The adaptive failure pattern classificationmethod based on neural network is presented through the study of ART-2 neural networks and it is put into application on bearing diagnosis. The results indicate that this method has recognizing abilities of fast, stable and self-adaptive response for bearing fault pattern.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com