<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

稀土發光材料(La1-xGdx)OBr:Tb,Ce中的能量傳遞

Energy Transfer in (La1-xGdx) OBr: Tb, Ce

  • 摘要: 在紫外光激發下,(La1-xGdx)OBr:Tb0.0075,Cey中Gd5+、Ce3+、Tb3+可各自吸收激發能。Ce3+和Tb3+發光,Ge3+不發光,但可將能量傳遞給Ce3+和Tb3+發光。Ce3+和Tb3+之間可能有可逆的能量傳遞。Gd的存在改變晶場分布,使Ce3+激發帶長波端紅移,有利于Tb3+5D3→Ce3+→Tb3+5D4的能量傳遞,敏化人眼敏感的綠光發射,也有利于Tb3+和Ce3+發光的溫度穩定性。

     

    Abstract: Gd3+, Ce3+ and Tb3+ in (La1-xGdx OBr: Tb0.0075, Cey can be excited with different wavelengths in ultra-violet region. Ce3+ and Tb3+ radiate. No Gd3+ characteristic luminescence has been observed, yet the energy of excited Gd3+transfers to Ce3+ and Tb3+, thus contributes to their radiations conssque-rtly. Energy transfer may be reversible to some extent between Ce3+ and Tb3+. The existance of Gd changes the crystal field distribution makes some red shift of the Ce3+ excited band and causes more Tb3+5D3→Ce3+→Tb3+5D4 energy transfer. These energy transfer processes result in the strengthen of greenish luminescence to which the naked eye is most sensitive, also result in the improvements of temperature stability of both Ce3+ and Tb3+ luminescence.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com