<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

一種理想準晶格的數學模型

Mathematical Model for Structure of Ideal Quasicrystal Lattices

  • 摘要: 本文提出了一種理想準晶格的數學模型,它的平面投影圖中,平行的水平直線上結點服從Fibonacci排列;而每個分離的呈環狀結點的中心都是局部5次對稱中心;兩個相疊(相分離)的環狀結點外層均布著14(16)個結點,很圓滿地描述了Hiraga等人的錳-鋁準晶體高分辨圖。

     

    Abstract: In this paper, a mathematical model for structure of ideal quasicrystal lattices is set up. This Model describes very beautifully the following phenomena which is shown in the electron micrograph of the Mn-Al quasicrystal obtained by Hiraga et al. In some local areas, ten bright dots groups are distributed in concentric circles; sixteen bright dots are distributed the surroundings of every two neighbourhood righs of bright dots; and fourteen bright dots arc distributed the surroundings of every double overlapping rings of bright dots. Therefore, it seems that this model can explain more phenomena in Mn-Al alloy quasicrystal than those reported by Hiraga et al, and could offer some new ideas for the theoretical research of structure of quasicrystal.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com