<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

物質熔化溫度的粒度效應

The Effect of Particle Size at the Melting Temperature of Material

  • 摘要: 用熱力學方法,推導出適用于高分散度球形和非球形物質的熔化溫度隨粒度變化的關系式,本文所得方程式定量地描述了高分散度物質的熔化溫度隨粒度減小而降低的關系,所得結果對比于M.Hasegawa等人的理論計算能更好地符合于Coo14be2對鉛的實驗結果。

     

    Abstract: The equation between the melting temperature of the material andits high-dispersity are deduced by means of thermodynamic method. The results are suitable for the particles which are circular or non-cir cular.
    These equations describe quantitatively the fact that the melting emperature of material is lowered with the increaes of its dispersity.d The result of calculation for pb is more agreeable to the experimental tata, obtained by Coombes, than the theoretical data obtained by M. Hasegawa et al.

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com