<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>

鎳基高溫合金真空熔煉過程中鎂揮發的動力學

  • 摘要: 真空電弧重熔鎳基高溫合金GH220,自耗電極端部熔化區"突出環"內部的鎂分布基本均勻;而熔化液層及液固兩相區的鎂分布不均勻,從熔化液層表面到原始電極區鎂含量顯著增高。熔化液層中距表面約0.3毫米內的鎂含量Mgs和重熔錠鎂含量Mgi均與電極原始鎂含量Mge呈直線關系,本試驗條件下,Mgs=0.18Mge;Mgi=0.30Mge。重熔過程的鎂揮發主要發生于電極端部熔滴形成階段,揮發過程主要受控于鎂由原始電極向熔化液層-氣相界面遷移的速度,傳質系數K12=0.107厘米·秒-1
    真空感應熔煉GH220,鎂揮發受液相邊界層中擴散與界面揮發反應的混合控制,并非受控于氣相邊界層中鎂的擴散。在試驗條件下,液相邊界層中鎂的擴散與界面揮發反應總傳質系數K23=10-1~10-2厘米·秒-1,而氣相邊界層中鎂擴散的傳質系數K4=47.17厘米·秒-1。根據(dMg)/dτ=-K23·VA及-K23與工藝參數的關系,建立了鎂揮發的數學模型,即Mge與鎂加入量、揮發溫度、氣相壓力、保持時間、合金液面面積、溶體體積之間的定量關系式。此模型在實驗室和生產條件下均得到了很好的驗證,可用于調整真空感應熔煉的工藝參數,實現有效的控制合金鎂含量。

     

/

返回文章
返回
<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
www.77susu.com