<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

深部金屬礦開采關鍵理論技術進展與展望

王勇 吳愛祥 楊軍 楊鋼鋒 王珍岐 李健

王勇, 吳愛祥, 楊軍, 楊鋼鋒, 王珍岐, 李健. 深部金屬礦開采關鍵理論技術進展與展望[J]. 工程科學學報, 2023, 45(8): 1281-1292. doi: 10.13374/j.issn2095-9389.2022.11.12.004
引用本文: 王勇, 吳愛祥, 楊軍, 楊鋼鋒, 王珍岐, 李健. 深部金屬礦開采關鍵理論技術進展與展望[J]. 工程科學學報, 2023, 45(8): 1281-1292. doi: 10.13374/j.issn2095-9389.2022.11.12.004
WANG Yong, WU Ai-xiang, YANG Jun, YANG Gang-feng, WANG Zhen-qi, LI Jian. Progress and prospective of the mining key technology for deep metal mines[J]. Chinese Journal of Engineering, 2023, 45(8): 1281-1292. doi: 10.13374/j.issn2095-9389.2022.11.12.004
Citation: WANG Yong, WU Ai-xiang, YANG Jun, YANG Gang-feng, WANG Zhen-qi, LI Jian. Progress and prospective of the mining key technology for deep metal mines[J]. Chinese Journal of Engineering, 2023, 45(8): 1281-1292. doi: 10.13374/j.issn2095-9389.2022.11.12.004

深部金屬礦開采關鍵理論技術進展與展望

doi: 10.13374/j.issn2095-9389.2022.11.12.004
基金項目: 國家自然科學基金資助項目 (52130404 );中國礦業大學(北京)深部巖土力學與地下工程國家重點實驗室開放基金課題資助項目(SKLGDUEK2127);中央高校基本科研業務費資助項目(QNXM20220002, FRF-TP-19-002C2Z,FRF-IDRY-GD22-004)
詳細信息
    通訊作者:

    E-mail: wuaixiang@126.com

  • 中圖分類號: TD853

Progress and prospective of the mining key technology for deep metal mines

More Information
  • 摘要: 深部巖體相比淺部巖體具有強流變性、強濕熱環境和強動力災害等差異,相關巖體力學理論和開采技術不再適用于深部金屬礦開采。因此本文對深部巖體力學、深部建井提升、綠色開采、智能開采這4個金屬礦深部開采的關鍵理論技術的研究現狀進行綜述,并針對性提出未來的研究重點。最后,基于現階段深部金屬礦開采的關鍵技術和理論的研究現狀以及存在的問題,提出了發展和完善極深部巖體力學理論、進行原位流態化開采技術研究和應用以及建設超大型深部智慧化無人礦山這3個方面的展望。隨著金屬礦開采深度不斷下降,亟需研究金屬礦深部開采相關理論技術,確保深部金屬礦產資源安全、高效、經濟、環保地進行開采。

     

  • 圖  1  南非Deep Mine計劃研究內容[6,11,16,20]

    Figure  1.  Research contents of Deep Mine project in South Africa [6,11,16,20]

    圖  2  深部金屬礦巖體力學理論研究總體框架

    Figure  2.  General framework of theoretical research on rock mass mechanics of deep metal mines

    圖  3  全尾砂膏體充填工藝流程[45]

    Figure  3.  Full tailings paste backfilling process[45]

    圖  4  智能礦山技術體系

    Figure  4.  Technical system of intelligent mining

    表  1  國外典型深部金屬礦山[1415]

    Table  1.   Foreign typical deep metal mines[1415]

    NameMining depth/mCountry
    Western deep level gold mine4800South Africa
    Mponeng gold mine4350South Africa
    Savuka gold mine4000South Africa
    Tau Tona Anglo gold mine3900South Africa
    Caritonville gold mine3800South Africa
    East Rand Proprietary mines3585South Africa
    South deep gold mine3500South Africa
    Kloof gold mine3500South Africa
    Driefontein gold mine3400South Africa
    Kusasalethu gold mine3276South Africa
    Champion Reef gold mine3260India
    Kolar gold mine (closed)3200India
    President Steyn gold mine3200South Africa
    Boksburg gold mine3150South Africa
    LaRonde gold–silver–copper–zine mine3120Canada
    Andina copper mine3070Chile
    Moab Khotsong gold mine3054South Africa
    Lucky Friday silver–lead–zinc mine3000USA
    Kidd Creek copper–zine mine2927Canada
    Great Noligwa gold mine2600South Africa
    Creighton nickel mine2500Canada
    Merensky Reef platinum-palladium mine2200South Africa
    Sudbury copper–nickel mine2000Canada
    Mount Isa copper mine1900Australia
    Pribram Uranium mine1836Czech Republic
    SDAG Wismut Uranium mine (closed)1800Germany
    Cheremukhovskaya–Glubokaya copper mine1550Former Soviet Union
    Boulby Potash mine1300UK
    Noranda mine1280Canada
    下載: 導出CSV

    表  2  國外主要礦業大國深部開采研究歷程

    Table  2.   Research process of deep mining in major foreign mining countries

    YearResearch processCountry
    1908Sets up rock burst commissionSouth Africa
    1942Classical seminar on rock burst in OntarioCanada
    1960sResearch on monitoring rock burst using microseismic techniqueUSA
    1970sEstablish a microseismic monitoring systemSouth Africa
    1977Organized a special committee on rockburstThe International Society for Rock Mechanics
    1983Carried out special research to solve the problems of 1600 m deep miningSoviet Union
    1985Ontario industry project and rockburst research programCanada
    1990sResearch on the differences in signals such as rock bursts, natural
    earthquakes, and nuclear explosions
    USA
    1998Launched the "Deep Mine" research projectSouth Africa
    1999Established geomechanics centerAustralia
    2011Research on earthquakes in deep underground mines (1000–3000 m)South Africa and Japan
    2015Established ultra-deep mining networkCanada
    2016Asked three forward-looking questionsEuropean Union
    下載: 導出CSV

    表  3  國內典型深部金屬礦山

    Table  3.   Typical deep metal mines in China

    NameMining depth/mMetal type
    Henan Qinling gold mine1990Gold
    Henan Fuxin gold mine1600Gold
    Jilin Jiapigou gold mine1600Gold
    Yunnan Huize lead–zinc mine1500Lead–zinc
    Yunnan Liuju copper mine1500Copper
    Liaoning Sishanling iron mine1500Iron
    Liaoning Hongtoushan copper mine1300Copper
    Henan Wenyu gold mine1300Gold
    Shannxi Tongguanzhongjin gold mine1200Gold
    Shandong Linglong gold mine1200Gold
    Anhui Dongguashan copper mine1120Copper
    Hunan Xiangxi gold mine1100Gold
    Xinjiang Ashele copper mine1100Copper
    Liaoning Erdaogou gold mine1100Gold
    Hebei Jinchangyu gold mine1100Gold
    Shandong Sanshandao gold mine1050Gold
    Shandong Jining iron mine1045Iron
    Gansu Jinchuan nickel mine1000Nickel
    Shandong Jinzhou mining1000Gold
    Liaoning Gongchangling iron mine1000Iron
    Hebei Shouwangfen copper mine1000Copper
    Shandong Rushan gold mine1000Gold
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xing L T, Xu Z H, Wang Q. Exploitation, Utilization and Planning of Mineral Resources. Beijing: Metallurgical Industry Press, 2008

    邢立亭, 徐征和, 王青. 礦產資源開發利用與規劃. 北京: 冶金工業出版社, 2008
    [2] Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1

    吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1
    [3] Li F Q, Li J W. Study on economic importance assessment of metal mineral resources. China Min Mag, 2018, 27(12): 6

    李芳琴, 李建武. 金屬礦產資源經濟重要性評估研究. 中國礦業, 2018, 27(12):6
    [4] Feng J C. Analysis on the construction of China’s metal mineral resources reserve system. Theory Mon, 2010(12): 164

    馮進城. 淺析我國金屬礦產資源儲備體系的構建. 理論月刊, 2010(12):164
    [5] Wang Y M. Opportunities and challenges to metal mine mining industry and the technical countermeasures. Mod Min, 2011, 27(1): 1

    王運敏. 金屬礦采礦工業面臨的機遇和挑戰及技術對策. 現代礦業, 2011, 27(1):1
    [6] Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236

    李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236
    [7] Els F. Idaho silver mine shaft sunk to final depth of 9587 feet [EB/OL]. (2016-05-24)[2022-11-12]. http://www.mining. com/idaho-silver-mine-shaft-sunk-final-depth-9587-feet/
    [8] The outline of strategic action for ore prospecting breakthrough (2011—2020) was officially released. Equip Geotech Eng, 2012, 13(4): 3

    找礦突破戰略行動綱要(2011—2020年)正式發布. 地質裝備, 2012, 13(4): 3
    [9] Xi J P. Struggling for building a world powerful country in science and technology [EB/OL]. (2016-05-31) [2022-11-12]. http://www.xinhuanet.com/politics/2016-05/31/c_1118965169.htm

    習近平. 為建設世界科技強國而奮斗 [EB/OL]. (2016-05-31)[2022-11-12]. http://www.xinhuanet.com/politics/2016-05/31/c_1118965169.htm
    [10] The ministry of natural resources will organize and implement the strategic mineral prospecting action (2021—2035). Miner Explor, 2021, 12(4): 988

    自然資源部將組織實施《戰略性礦產找礦行動(2021—2035年)》. 礦產勘查, 2021, 12(4): 988
    [11] Hedley D G F. Rockburst Handbook for Ontario Hardrock Mines. Ontario: Energy, Mines and Resources Canada, 1992
    [12] Zhao S C. Resource exploitation and underground engineering in deep stress—175th summary of Xiangshan conference. Adv Earth Sci, 2002, 17(2): 295

    趙生才. 深部高應力下的資源開采與地下工程——香山會議第175次綜述. 地球科學進展, 2002, 17(2):295
    [13] Bieniawski Z T. Strata Control in Mineral Engineering. United States: U. S. Department of Energy, 1986
    [14] Dong L J, Tong X J, Li X B, et al. Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. J Clean Prod, 2019, 210: 1562 doi: 10.1016/j.jclepro.2018.10.291
    [15] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417

    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
    [16] Li X B. Correct understanding and accurate positioning of zonal fracturing is of great significance to deep mining of metal mines // Proceedings of Academic Salon of New Views and New Theories 21. Beijing, 2008: 32

    李夕兵. 分區破裂化正確認識與準確定位對金屬礦山深部開采的意義重大// 新觀點新學說學術沙龍文集 21. 北京, 2008: 32
    [17] Bolstad D D. Rockburst control research by the US bureau of mines // Rockbursts and Seismicity in Mines. Rotterdam, 1990
    [18] Li X B, Gu D S. Disaster control and crushing mutagenesis of high stress in hard mining of deep wells // The 175th Scientific Conference of Xiangshan. Beijing, 2002: 101

    李夕兵, 古德生. 深井堅硬礦巖開采中高應力的災害控制與破碎誘變 // 香山第175次科學會議. 北京, 2002: 101
    [19] Jiang F F, Zhou H, Liu C, et al. Progress, prediction and prevention of rockbursts in underground metal mines. Chin J Rock Mech Eng, 2019, 38(5): 956

    江飛飛, 周輝, 劉暢, 等. 地下金屬礦山巖爆研究進展及預測與防治. 巖石力學與工程學報, 2019, 38(5):956
    [20] He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803

    何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803
    [21] Australian Centre for Geomechanics. ACG research [EB/OL]. (2016-09-20)[2022-11-12]. http://acg.uwa.edu.au/acg -research/
    [22] Durrheim R, Ogasawara H, Nakatani M, et al. Observational studies to mitigate seismic risks in mines — A new Japanese–South African collaborative research project // Proceedings of the Fifth International Seminar on Deep and High Stress Mining", "Proceedings of the International Conference on Deep and High Stress Mining. Perth, 2010: 11
    [23] I2Mine. Project overview [EB/OL]. [2022-11-12]. http://www.i2mine.eu
    [24] CHPM2030. Combined heat, power and metal extraction [EB/OL]. [2022-11-12]. http://www.chpm2030.eu
    [25] Johnson D B. Biomining–biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol, 2014, 30: 24 doi: 10.1016/j.copbio.2014.04.008
    [26] Li Y S. Research and review of mine impact at home and abroad. Ref Mater Coal Sci Res, 1982(4): 1

    李玉生. 國內外礦山沖擊的研究及評述. 煤炭科研參考資料, 1982(4):1
    [27] Guo J F, Diao X H, Zhang C X, et al. On the research of the mining technology for Dongguashan deep-lying copper deposit. Met Mine, 2002(1): 10

    郭金峰, 刁心宏, 張傳信, 等. 冬瓜山深埋銅礦床開采技術的研究. 金屬礦山, 2002(1):10
    [28] Bian Z H. Application of infrastructure prospecting in mine construction with ultra-deep well: Taking sishanling iron mine as an example. Mod Min, 2020, 36(8): 68

    邊振輝. 基建勘探在超深井礦山建設中的應用: 以思山嶺鐵礦為例. 現代礦業, 2020, 36(8):68
    [29] Gu D S. The development tendency of mining science and technology of underground metal mine. Gold, 2004, 25(1): 18

    古德生. 地下金屬礦采礦科學技術的發展趨勢. 黃金, 2004, 25(1):18
    [30] Jiang Y D, Pan Y S, Jiang F X, et al. State of the art review on mechanism and prevention of coal bumps in China. J China Coal Soc, 2014, 39(2): 205

    姜耀東, 潘一山, 姜福興, 等. 我國煤炭開采中的沖擊地壓機理和防治. 煤炭學報, 2014, 39(2):205
    [31] Notice of the state council municipality on printing and distributing the 13th five-year national science and technology innovation plan. Gazette State Counc People’s Repub China, 2016(24): 6

    國務院關于印發“十三五”國家科技創新規劃的通知. 中華人民共和國國務院公報, 2016(24): 6
    [32] Yang T. Discussion on underground mining technology and development trend of underground mining. Mod Chem Res, 2020(10): 9

    楊濤. 談井下采礦技術及井下采礦的發展趨勢. 當代化工研究, 2020(10):9
    [33] Li X F, Tan D X, Liu X L. Technical transformation of mining technology of deep metal ore body in mine. Min Technol, 2014, 14(4): 10

    李學鋒, 譚定新, 劉湘蓮. 金屬礦山深部礦體開采工藝的技術改造. 采礦技術, 2014, 14(4):10
    [34] Xie H P, Feng X T. Basic Research on Safety of Major Projects in Disaster Environment. Beijing: Science Press, 2009

    謝和平, 馮夏庭. 災害環境下重大工程安全性的基礎研究. 北京: 科學出版社, 2009
    [35] Bready B H G, Brown E T. Rock Mechanics for Underground Mining. New York: Kluwer Academic Publishers, 2005
    [36] Xie H P, Gao F, Ju Y. Research and development of rock mechanics in deep ground engineering. Chin J Rock Mech Eng, 2015, 34(11): 2161

    謝和平, 高峰, 鞠楊. 深部巖體力學研究與探索. 巖石力學與工程學報, 2015, 34(11):2161
    [37] Kang H P, Feng Y J. Monitoring of stress change in coal seam caused by directional hydraulic fracturing in working face with strong roof and its evolution. J China Coal Soc, 2012, 37(12): 1953

    康紅普, 馮彥軍. 定向水力壓裂工作面煤體應力監測及其演化規律. 煤炭學報, 2012, 37(12):1953
    [38] Kang H P, Wang G F, Jiang P F, et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000m. J China Coal Soc, 2018, 43(7): 1789

    康紅普, 王國法, 姜鵬飛, 等. 煤礦千米深井圍巖控制及智能開采技術構想. 煤炭學報, 2018, 43(7):1789
    [39] Liu Z Q, Song Z Y, Cheng S Y, et al. Equipment and key technologies for full-section scientifically drilling of kilometer-level vertical shafts. J China Coal Soc, 2020, 45(11): 3645

    劉志強, 宋朝陽, 程守業, 等. 千米級豎井全斷面科學鉆進裝備與關鍵技術分析. 煤炭學報, 2020, 45(11):3645
    [40] Liang P F, Leng K, Ma Q. Research on the key hoisting technology in deep shafts of metal mines. J Liaoning Univ Technol, 2018, 38(1): 29

    梁鵬飛, 冷奎, 馬倩. 金屬礦山深井提升關鍵技術探討. 遼寧工業大學學報(自然科學版), 2018, 38(1):29
    [41] Han R J, Wang H L, Zhang W. Discussion of multi-rope friction hoisting rope in deep shaft. Nonferrous Metall Equip, 2019(2): 102

    韓瑞軍, 王會來, 張偉. 深井多繩摩擦提升鋼絲繩研究. 有色設備, 2019(2):102
    [42] Zhao G Y, Wu P, Pei D F, et al. Study on the mining mode in deep metal mines and its technological system based on green mining. Gold, 2020, 41(9): 58

    趙國彥, 吳攀, 裴佃飛, 等. 基于綠色開采的深部金屬礦開采模式與技術體系研究. 黃金, 2020, 41(9):58
    [43] Liu X H. Tailings paste disposal will become the main trend of green mining of metal mines. China Mining News, 2018-6-20(3)

    劉曉慧. 尾礦膏體處置將成金屬礦綠色開采主趨勢. 中國礦業報, 2018-6-20(3)
    [44] Ruan Z E, Wu A X, Jiao H Z, et al. Advances and trends on thickening of full-tailings slurry in China. Chin J Nonferrous Met, 2022, 32(1): 286

    阮竹恩, 吳愛祥, 焦華喆, 等. 我國全尾砂料漿濃密研究進展與發展趨勢. 中國有色金屬學報, 2022, 32(1):286
    [45] Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Met Mine, 2016(7): 1

    吳愛祥, 王勇, 王洪江. 膏體充填技術現狀及趨勢. 金屬礦山, 2016(7):1
    [46] Wu A X, Wang H J. Theory and Technology of Metal Paste Filling. Beijing: Science Press, 2015

    吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015
    [47] Kagermann H, Wahlster W, Helbig J. Securing the Future of German Manufacturing Industry: Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0. Final Report of the Industrie 4.0 Working Group, 2015
    [48] Wang L H. From intelligence science to intelligent manufacturing. Engineering, 2019, 5(4): 615 doi: 10.1016/j.eng.2019.04.011
    [49] Zhou J. Research on the construction of enterprise integration management system. Mod Ind Econ, 2013(11): 16

    周劍. 企業兩化融合管理體系構建研究. 現代產業經濟, 2013(11):16
    [50] Gustafson A, Lipsett M, Schunnesson H, et al. Development of a Markov model for production performance optimisation. Application for semi-automatic and manual LHD machines in underground mines. Int J Min Reclam Environ, 2014, 28(5): 342
    [51] Li J G, Zhan K. Intelligent mining technology for an underground metal mine based on unmanned equipment. Engineering, 2018, 4(3): 381 doi: 10.1016/j.eng.2018.05.013
    [52] Xie H P. Research framework and anticipated results of deep rock mechanics and mining theory. Adv Eng Sci, 2017, 49(2): 1

    謝和平. “深部巖體力學與開采理論”研究構想與預期成果展望. 工程科學與技術, 2017, 49(2):1
    [53] Xie H P, Wang J H, Ju Y. Coal Industry Reform: Strategies and Directions. Beijing: Science Press, 2018

    謝和平, 王金華, 鞠楊. 煤炭革命的戰略與方向. 北京: 科學出版社, 2018
    [54] Ranjith P G, Zhao J, Ju M H, et al. Opportunities and challenges in deep mining: A brief review. Engineering, 2017, 3(4): 546 doi: 10.1016/J.ENG.2017.04.024
    [55] Xie H P, Gao F, Ju Y, et al. Theoretical and technological conception of the fluidization mining for deep coal resources. J China Coal Soc, 2017, 42(3): 547

    謝和平, 高峰, 鞠楊, 等. 深地煤炭資源流態化開采理論與技術構想. 煤炭學報, 2017, 42(3):547
    [56] Xie H P, Gao F, Ju Y, et al. Novel idea and disruptive technologies for the exploration and research of deep earth. Adv Eng Sci, 2017, 49(1): 1

    謝和平, 高峰, 鞠楊, 等. 深地科學領域的若干顛覆性技術構想和研究方向. 工程科學與技術, 2017, 49(1):1
    [57] Wu A X, Wang H J, Yin S H, et al. Conception of in situ fluidization mining for deep metal mines. J Min Sci Technol, 2021, 6(3): 255

    吳愛祥, 王洪江, 尹升華, 等. 深層金屬礦原位流態化開采構想. 礦業科學學報, 2021, 6(3):255
    [58] Liang W G, Zhao Y S, Xu S G, et al. Theoretical study of in situ solution mining. J Taiyuan Univ Technol, 2012, 43(3): 382

    梁衛國, 趙陽升, 徐素國, 等. 原位溶浸采礦理論研究. 太原理工大學學報, 2012, 43(3):382
    [59] Bhargava S K, Ram R, Pownceby M, et al. A review of acid leaching of uraninite. Hydrometallurgy, 2015, 151: 10 doi: 10.1016/j.hydromet.2014.10.015
    [60] Tu S H, Hao D Y, Miao K J, et al. Research of synergetic mining for mining, dressing and backfilling integrated deep mines with complicated systems. J China Univ Min Technol, 2021, 50(3): 431

    屠世浩, 郝定溢, 苗凱軍, 等. 深部采選充一體化礦井復雜系統協同開采. 中國礦業大學學報, 2021, 50(3):431
    [61] Sun C Y, Song Z G. Development and application outline of integrated underground mining-processing system. Min Metall, 2017, 26(1): 1

    孫傳堯, 宋振國. 地下采選一體化系統的研究及應用概況. 礦冶, 2017, 26(1):1
    [62] Luo X Y, Li J N, Lang D. Basic connotation, core problems and key technologies of wisdom mine. Ind Mine Autom, 2019, 45(9): 61

    羅香玉, 李嘉楠, 郎丁. 智慧礦山基本內涵、核心問題與關鍵技術. 工礦自動化, 2019, 45(9):61
    [63] Lyu P F, He M, Chen X J, et al. Development and prospect of wisdom mine. Ind Mine Autom, 2018, 44(9): 84

    呂鵬飛, 何敏, 陳曉晶, 等. 智慧礦山發展與展望. 工礦自動化, 2018, 44(9):84
    [64] Zhao M L. Research on the framework and development prospect of intelligent mine. Sci Technol Innov, 2019(23): 180 doi: 10.3969/j.issn.1673-1328.2019.23.109

    趙明磊. 智慧礦山框架與發展前景研究. 科學技術創新, 2019(23):180 doi: 10.3969/j.issn.1673-1328.2019.23.109
    [65] Zhang Y M. Interpretation of smart earth and smart city. Inf China, 2010(10): 23

    張永民. 解讀智慧地球與智慧城市. 中國信息界, 2010(10):23
  • 加載中
圖(4) / 表(3)
計量
  • 文章訪問數:  418
  • HTML全文瀏覽量:  134
  • PDF下載量:  115
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-11-12
  • 網絡出版日期:  2022-12-13
  • 刊出日期:  2023-08-25

目錄

    /

    返回文章
    返回