-
摘要: 深部巖體相比淺部巖體具有強流變性、強濕熱環境和強動力災害等差異,相關巖體力學理論和開采技術不再適用于深部金屬礦開采。因此本文對深部巖體力學、深部建井提升、綠色開采、智能開采這4個金屬礦深部開采的關鍵理論技術的研究現狀進行綜述,并針對性提出未來的研究重點。最后,基于現階段深部金屬礦開采的關鍵技術和理論的研究現狀以及存在的問題,提出了發展和完善極深部巖體力學理論、進行原位流態化開采技術研究和應用以及建設超大型深部智慧化無人礦山這3個方面的展望。隨著金屬礦開采深度不斷下降,亟需研究金屬礦深部開采相關理論技術,確保深部金屬礦產資源安全、高效、經濟、環保地進行開采。Abstract: Mineral resources are essential to human life and social development and play an important role in national security and economic development. China has huge reserves of metal mineral resources, but the per capita possession is low. Especially, it is difficult for iron, copper, aluminum, and other metal mineral resources to be self-sufficient and heavily dependent on foreign countries. Because of the massive exploitation of metal mineral resources, shallow resources are becoming exhausted, and deep mining will become the main force for the supply of metal mineral resources in the future. “Going deep into the earth” corresponds to the current state of national resource strategy development. It is found that there is still a certain gap between China’s deep metal mining technology and mining depth compared with internationally developed mining countries. The mining depth of foreign mining countries is mostly over 3000 m, with three South African mines having a mining depth of over 4000 m, whereas the mining depth of Chinese mines is mostly below 2000 m, and most of the metal mines have not yet broken through the kilometer depth. Furthermore, the level of mining technology in established mining countries abroad is high, and the degree of mechanization and intelligence is high. Deep mining technology in China is insufficient to meet the need for deep mining. China still has a large gap compared with internationally developed countries; therefore, the related rock mass mechanics theory and mining technology are no longer suitable for deep metal mining. In this paper, we summarize the research status of four major theories and technologies for deep mining of metal mines, namely, deep rock mechanics, deep well building and lifting, green mining, and intelligent mining, and proposes future research emphases. Finally, based on the research status and existing problems of the key technologies and theories of deep metal mining at present, the paper puts forward three strategic ideas: deep-part construction of a super-large intelligent autonomous mine, in-situ fluidized mining, and rock mechanics. With the continuous increase of mining depth, it is urgent to study the related theory and technology of deep mining of metal mines so as to ensure the safe, efficient, economical, and environmentally friendly mining of deep metal mineral resources and ensure the resource security of our country.
-
Key words:
- deep metal mines /
- rock mechanics /
- shaft construction and hoisting /
- green mining /
- intelligent mining
-
Name Mining depth/m Country Western deep level gold mine 4800 South Africa Mponeng gold mine 4350 South Africa Savuka gold mine 4000 South Africa Tau Tona Anglo gold mine 3900 South Africa Caritonville gold mine 3800 South Africa East Rand Proprietary mines 3585 South Africa South deep gold mine 3500 South Africa Kloof gold mine 3500 South Africa Driefontein gold mine 3400 South Africa Kusasalethu gold mine 3276 South Africa Champion Reef gold mine 3260 India Kolar gold mine (closed) 3200 India President Steyn gold mine 3200 South Africa Boksburg gold mine 3150 South Africa LaRonde gold–silver–copper–zine mine 3120 Canada Andina copper mine 3070 Chile Moab Khotsong gold mine 3054 South Africa Lucky Friday silver–lead–zinc mine 3000 USA Kidd Creek copper–zine mine 2927 Canada Great Noligwa gold mine 2600 South Africa Creighton nickel mine 2500 Canada Merensky Reef platinum-palladium mine 2200 South Africa Sudbury copper–nickel mine 2000 Canada Mount Isa copper mine 1900 Australia Pribram Uranium mine 1836 Czech Republic SDAG Wismut Uranium mine (closed) 1800 Germany Cheremukhovskaya–Glubokaya copper mine 1550 Former Soviet Union Boulby Potash mine 1300 UK Noranda mine 1280 Canada 表 2 國外主要礦業大國深部開采研究歷程
Table 2. Research process of deep mining in major foreign mining countries
Year Research process Country 1908 Sets up rock burst commission South Africa 1942 Classical seminar on rock burst in Ontario Canada 1960s Research on monitoring rock burst using microseismic technique USA 1970s Establish a microseismic monitoring system South Africa 1977 Organized a special committee on rockburst The International Society for Rock Mechanics 1983 Carried out special research to solve the problems of 1600 m deep mining Soviet Union 1985 Ontario industry project and rockburst research program Canada 1990s Research on the differences in signals such as rock bursts, natural
earthquakes, and nuclear explosionsUSA 1998 Launched the "Deep Mine" research project South Africa 1999 Established geomechanics center Australia 2011 Research on earthquakes in deep underground mines (1000–3000 m) South Africa and Japan 2015 Established ultra-deep mining network Canada 2016 Asked three forward-looking questions European Union 表 3 國內典型深部金屬礦山
Table 3. Typical deep metal mines in China
Name Mining depth/m Metal type Henan Qinling gold mine 1990 Gold Henan Fuxin gold mine 1600 Gold Jilin Jiapigou gold mine 1600 Gold Yunnan Huize lead–zinc mine 1500 Lead–zinc Yunnan Liuju copper mine 1500 Copper Liaoning Sishanling iron mine 1500 Iron Liaoning Hongtoushan copper mine 1300 Copper Henan Wenyu gold mine 1300 Gold Shannxi Tongguanzhongjin gold mine 1200 Gold Shandong Linglong gold mine 1200 Gold Anhui Dongguashan copper mine 1120 Copper Hunan Xiangxi gold mine 1100 Gold Xinjiang Ashele copper mine 1100 Copper Liaoning Erdaogou gold mine 1100 Gold Hebei Jinchangyu gold mine 1100 Gold Shandong Sanshandao gold mine 1050 Gold Shandong Jining iron mine 1045 Iron Gansu Jinchuan nickel mine 1000 Nickel Shandong Jinzhou mining 1000 Gold Liaoning Gongchangling iron mine 1000 Iron Hebei Shouwangfen copper mine 1000 Copper Shandong Rushan gold mine 1000 Gold www.77susu.com -
參考文獻
[1] Xing L T, Xu Z H, Wang Q. Exploitation, Utilization and Planning of Mineral Resources. Beijing: Metallurgical Industry Press, 2008邢立亭, 徐征和, 王青. 礦產資源開發利用與規劃. 北京: 冶金工業出版社, 2008 [2] Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1 [3] Li F Q, Li J W. Study on economic importance assessment of metal mineral resources. China Min Mag, 2018, 27(12): 6李芳琴, 李建武. 金屬礦產資源經濟重要性評估研究. 中國礦業, 2018, 27(12):6 [4] Feng J C. Analysis on the construction of China’s metal mineral resources reserve system. Theory Mon, 2010(12): 164馮進城. 淺析我國金屬礦產資源儲備體系的構建. 理論月刊, 2010(12):164 [5] Wang Y M. Opportunities and challenges to metal mine mining industry and the technical countermeasures. Mod Min, 2011, 27(1): 1王運敏. 金屬礦采礦工業面臨的機遇和挑戰及技術對策. 現代礦業, 2011, 27(1):1 [6] Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236 [7] Els F. Idaho silver mine shaft sunk to final depth of 9587 feet [EB/OL]. (2016-05-24)[2022-11-12]. http://www.mining. com/idaho-silver-mine-shaft-sunk-final-depth-9587-feet/ [8] The outline of strategic action for ore prospecting breakthrough (2011—2020) was officially released. Equip Geotech Eng, 2012, 13(4): 3找礦突破戰略行動綱要(2011—2020年)正式發布. 地質裝備, 2012, 13(4): 3 [9] Xi J P. Struggling for building a world powerful country in science and technology [EB/OL]. (2016-05-31) [2022-11-12]. http://www.xinhuanet.com/politics/2016-05/31/c_1118965169.htm習近平. 為建設世界科技強國而奮斗 [EB/OL]. (2016-05-31)[2022-11-12]. http://www.xinhuanet.com/politics/2016-05/31/c_1118965169.htm [10] The ministry of natural resources will organize and implement the strategic mineral prospecting action (2021—2035). Miner Explor, 2021, 12(4): 988自然資源部將組織實施《戰略性礦產找礦行動(2021—2035年)》. 礦產勘查, 2021, 12(4): 988 [11] Hedley D G F. Rockburst Handbook for Ontario Hardrock Mines. Ontario: Energy, Mines and Resources Canada, 1992 [12] Zhao S C. Resource exploitation and underground engineering in deep stress—175th summary of Xiangshan conference. Adv Earth Sci, 2002, 17(2): 295趙生才. 深部高應力下的資源開采與地下工程——香山會議第175次綜述. 地球科學進展, 2002, 17(2):295 [13] Bieniawski Z T. Strata Control in Mineral Engineering. United States: U. S. Department of Energy, 1986 [14] Dong L J, Tong X J, Li X B, et al. Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. J Clean Prod, 2019, 210: 1562 doi: 10.1016/j.jclepro.2018.10.291 [15] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417 [16] Li X B. Correct understanding and accurate positioning of zonal fracturing is of great significance to deep mining of metal mines // Proceedings of Academic Salon of New Views and New Theories 21. Beijing, 2008: 32李夕兵. 分區破裂化正確認識與準確定位對金屬礦山深部開采的意義重大// 新觀點新學說學術沙龍文集 21. 北京, 2008: 32 [17] Bolstad D D. Rockburst control research by the US bureau of mines // Rockbursts and Seismicity in Mines. Rotterdam, 1990 [18] Li X B, Gu D S. Disaster control and crushing mutagenesis of high stress in hard mining of deep wells // The 175th Scientific Conference of Xiangshan. Beijing, 2002: 101李夕兵, 古德生. 深井堅硬礦巖開采中高應力的災害控制與破碎誘變 // 香山第175次科學會議. 北京, 2002: 101 [19] Jiang F F, Zhou H, Liu C, et al. Progress, prediction and prevention of rockbursts in underground metal mines. Chin J Rock Mech Eng, 2019, 38(5): 956江飛飛, 周輝, 劉暢, 等. 地下金屬礦山巖爆研究進展及預測與防治. 巖石力學與工程學報, 2019, 38(5):956 [20] He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803 [21] Australian Centre for Geomechanics. ACG research [EB/OL]. (2016-09-20)[2022-11-12]. http://acg.uwa.edu.au/acg -research/ [22] Durrheim R, Ogasawara H, Nakatani M, et al. Observational studies to mitigate seismic risks in mines — A new Japanese–South African collaborative research project // Proceedings of the Fifth International Seminar on Deep and High Stress Mining", "Proceedings of the International Conference on Deep and High Stress Mining. Perth, 2010: 11 [23] I2Mine. Project overview [EB/OL]. [2022-11-12]. http://www.i2mine.eu [24] CHPM2030. Combined heat, power and metal extraction [EB/OL]. [2022-11-12]. http://www.chpm2030.eu [25] Johnson D B. Biomining–biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol, 2014, 30: 24 doi: 10.1016/j.copbio.2014.04.008 [26] Li Y S. Research and review of mine impact at home and abroad. Ref Mater Coal Sci Res, 1982(4): 1李玉生. 國內外礦山沖擊的研究及評述. 煤炭科研參考資料, 1982(4):1 [27] Guo J F, Diao X H, Zhang C X, et al. On the research of the mining technology for Dongguashan deep-lying copper deposit. Met Mine, 2002(1): 10郭金峰, 刁心宏, 張傳信, 等. 冬瓜山深埋銅礦床開采技術的研究. 金屬礦山, 2002(1):10 [28] Bian Z H. Application of infrastructure prospecting in mine construction with ultra-deep well: Taking sishanling iron mine as an example. Mod Min, 2020, 36(8): 68邊振輝. 基建勘探在超深井礦山建設中的應用: 以思山嶺鐵礦為例. 現代礦業, 2020, 36(8):68 [29] Gu D S. The development tendency of mining science and technology of underground metal mine. Gold, 2004, 25(1): 18古德生. 地下金屬礦采礦科學技術的發展趨勢. 黃金, 2004, 25(1):18 [30] Jiang Y D, Pan Y S, Jiang F X, et al. State of the art review on mechanism and prevention of coal bumps in China. J China Coal Soc, 2014, 39(2): 205姜耀東, 潘一山, 姜福興, 等. 我國煤炭開采中的沖擊地壓機理和防治. 煤炭學報, 2014, 39(2):205 [31] Notice of the state council municipality on printing and distributing the 13th five-year national science and technology innovation plan. Gazette State Counc People’s Repub China, 2016(24): 6國務院關于印發“十三五”國家科技創新規劃的通知. 中華人民共和國國務院公報, 2016(24): 6 [32] Yang T. Discussion on underground mining technology and development trend of underground mining. Mod Chem Res, 2020(10): 9楊濤. 談井下采礦技術及井下采礦的發展趨勢. 當代化工研究, 2020(10):9 [33] Li X F, Tan D X, Liu X L. Technical transformation of mining technology of deep metal ore body in mine. Min Technol, 2014, 14(4): 10李學鋒, 譚定新, 劉湘蓮. 金屬礦山深部礦體開采工藝的技術改造. 采礦技術, 2014, 14(4):10 [34] Xie H P, Feng X T. Basic Research on Safety of Major Projects in Disaster Environment. Beijing: Science Press, 2009謝和平, 馮夏庭. 災害環境下重大工程安全性的基礎研究. 北京: 科學出版社, 2009 [35] Bready B H G, Brown E T. Rock Mechanics for Underground Mining. New York: Kluwer Academic Publishers, 2005 [36] Xie H P, Gao F, Ju Y. Research and development of rock mechanics in deep ground engineering. Chin J Rock Mech Eng, 2015, 34(11): 2161謝和平, 高峰, 鞠楊. 深部巖體力學研究與探索. 巖石力學與工程學報, 2015, 34(11):2161 [37] Kang H P, Feng Y J. Monitoring of stress change in coal seam caused by directional hydraulic fracturing in working face with strong roof and its evolution. J China Coal Soc, 2012, 37(12): 1953康紅普, 馮彥軍. 定向水力壓裂工作面煤體應力監測及其演化規律. 煤炭學報, 2012, 37(12):1953 [38] Kang H P, Wang G F, Jiang P F, et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000m. J China Coal Soc, 2018, 43(7): 1789康紅普, 王國法, 姜鵬飛, 等. 煤礦千米深井圍巖控制及智能開采技術構想. 煤炭學報, 2018, 43(7):1789 [39] Liu Z Q, Song Z Y, Cheng S Y, et al. Equipment and key technologies for full-section scientifically drilling of kilometer-level vertical shafts. J China Coal Soc, 2020, 45(11): 3645劉志強, 宋朝陽, 程守業, 等. 千米級豎井全斷面科學鉆進裝備與關鍵技術分析. 煤炭學報, 2020, 45(11):3645 [40] Liang P F, Leng K, Ma Q. Research on the key hoisting technology in deep shafts of metal mines. J Liaoning Univ Technol, 2018, 38(1): 29梁鵬飛, 冷奎, 馬倩. 金屬礦山深井提升關鍵技術探討. 遼寧工業大學學報(自然科學版), 2018, 38(1):29 [41] Han R J, Wang H L, Zhang W. Discussion of multi-rope friction hoisting rope in deep shaft. Nonferrous Metall Equip, 2019(2): 102韓瑞軍, 王會來, 張偉. 深井多繩摩擦提升鋼絲繩研究. 有色設備, 2019(2):102 [42] Zhao G Y, Wu P, Pei D F, et al. Study on the mining mode in deep metal mines and its technological system based on green mining. Gold, 2020, 41(9): 58趙國彥, 吳攀, 裴佃飛, 等. 基于綠色開采的深部金屬礦開采模式與技術體系研究. 黃金, 2020, 41(9):58 [43] Liu X H. Tailings paste disposal will become the main trend of green mining of metal mines. China Mining News, 2018-6-20(3)劉曉慧. 尾礦膏體處置將成金屬礦綠色開采主趨勢. 中國礦業報, 2018-6-20(3) [44] Ruan Z E, Wu A X, Jiao H Z, et al. Advances and trends on thickening of full-tailings slurry in China. Chin J Nonferrous Met, 2022, 32(1): 286阮竹恩, 吳愛祥, 焦華喆, 等. 我國全尾砂料漿濃密研究進展與發展趨勢. 中國有色金屬學報, 2022, 32(1):286 [45] Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Met Mine, 2016(7): 1吳愛祥, 王勇, 王洪江. 膏體充填技術現狀及趨勢. 金屬礦山, 2016(7):1 [46] Wu A X, Wang H J. Theory and Technology of Metal Paste Filling. Beijing: Science Press, 2015吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015 [47] Kagermann H, Wahlster W, Helbig J. Securing the Future of German Manufacturing Industry: Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0. Final Report of the Industrie 4.0 Working Group, 2015 [48] Wang L H. From intelligence science to intelligent manufacturing. Engineering, 2019, 5(4): 615 doi: 10.1016/j.eng.2019.04.011 [49] Zhou J. Research on the construction of enterprise integration management system. Mod Ind Econ, 2013(11): 16周劍. 企業兩化融合管理體系構建研究. 現代產業經濟, 2013(11):16 [50] Gustafson A, Lipsett M, Schunnesson H, et al. Development of a Markov model for production performance optimisation. Application for semi-automatic and manual LHD machines in underground mines. Int J Min Reclam Environ, 2014, 28(5): 342 [51] Li J G, Zhan K. Intelligent mining technology for an underground metal mine based on unmanned equipment. Engineering, 2018, 4(3): 381 doi: 10.1016/j.eng.2018.05.013 [52] Xie H P. Research framework and anticipated results of deep rock mechanics and mining theory. Adv Eng Sci, 2017, 49(2): 1謝和平. “深部巖體力學與開采理論”研究構想與預期成果展望. 工程科學與技術, 2017, 49(2):1 [53] Xie H P, Wang J H, Ju Y. Coal Industry Reform: Strategies and Directions. Beijing: Science Press, 2018謝和平, 王金華, 鞠楊. 煤炭革命的戰略與方向. 北京: 科學出版社, 2018 [54] Ranjith P G, Zhao J, Ju M H, et al. Opportunities and challenges in deep mining: A brief review. Engineering, 2017, 3(4): 546 doi: 10.1016/J.ENG.2017.04.024 [55] Xie H P, Gao F, Ju Y, et al. Theoretical and technological conception of the fluidization mining for deep coal resources. J China Coal Soc, 2017, 42(3): 547謝和平, 高峰, 鞠楊, 等. 深地煤炭資源流態化開采理論與技術構想. 煤炭學報, 2017, 42(3):547 [56] Xie H P, Gao F, Ju Y, et al. Novel idea and disruptive technologies for the exploration and research of deep earth. Adv Eng Sci, 2017, 49(1): 1謝和平, 高峰, 鞠楊, 等. 深地科學領域的若干顛覆性技術構想和研究方向. 工程科學與技術, 2017, 49(1):1 [57] Wu A X, Wang H J, Yin S H, et al. Conception of in situ fluidization mining for deep metal mines. J Min Sci Technol, 2021, 6(3): 255吳愛祥, 王洪江, 尹升華, 等. 深層金屬礦原位流態化開采構想. 礦業科學學報, 2021, 6(3):255 [58] Liang W G, Zhao Y S, Xu S G, et al. Theoretical study of in situ solution mining. J Taiyuan Univ Technol, 2012, 43(3): 382梁衛國, 趙陽升, 徐素國, 等. 原位溶浸采礦理論研究. 太原理工大學學報, 2012, 43(3):382 [59] Bhargava S K, Ram R, Pownceby M, et al. A review of acid leaching of uraninite. Hydrometallurgy, 2015, 151: 10 doi: 10.1016/j.hydromet.2014.10.015 [60] Tu S H, Hao D Y, Miao K J, et al. Research of synergetic mining for mining, dressing and backfilling integrated deep mines with complicated systems. J China Univ Min Technol, 2021, 50(3): 431屠世浩, 郝定溢, 苗凱軍, 等. 深部采選充一體化礦井復雜系統協同開采. 中國礦業大學學報, 2021, 50(3):431 [61] Sun C Y, Song Z G. Development and application outline of integrated underground mining-processing system. Min Metall, 2017, 26(1): 1孫傳堯, 宋振國. 地下采選一體化系統的研究及應用概況. 礦冶, 2017, 26(1):1 [62] Luo X Y, Li J N, Lang D. Basic connotation, core problems and key technologies of wisdom mine. Ind Mine Autom, 2019, 45(9): 61羅香玉, 李嘉楠, 郎丁. 智慧礦山基本內涵、核心問題與關鍵技術. 工礦自動化, 2019, 45(9):61 [63] Lyu P F, He M, Chen X J, et al. Development and prospect of wisdom mine. Ind Mine Autom, 2018, 44(9): 84呂鵬飛, 何敏, 陳曉晶, 等. 智慧礦山發展與展望. 工礦自動化, 2018, 44(9):84 [64] Zhao M L. Research on the framework and development prospect of intelligent mine. Sci Technol Innov, 2019(23): 180 doi: 10.3969/j.issn.1673-1328.2019.23.109趙明磊. 智慧礦山框架與發展前景研究. 科學技術創新, 2019(23):180 doi: 10.3969/j.issn.1673-1328.2019.23.109 [65] Zhang Y M. Interpretation of smart earth and smart city. Inf China, 2010(10): 23張永民. 解讀智慧地球與智慧城市. 中國信息界, 2010(10):23 -