Controlling the formation of reverted globular austenite and the as-transformed austenite grain size in low-alloy steel based on cementite
-
摘要: 逆變奧氏體微觀組織顯著影響鋼鐵材料的最終組織性能,闡明塊狀奧氏體的形成規律對于精準掌握逆相變至關重要。本文以Fe–2.5Mn–1.5Si–0.35C合金為研究對象,通過OM、SEM和EBSD等手段研究了不同預回火條件下晶內塊狀奧氏體與最終奧氏體晶粒尺寸的演變規律。研究結果表明,隨預回火溫度自350 ℃升高至650 ℃,晶內塊狀奧氏體體積分數呈現出先增加后迅速降低的趨勢;400 ℃預回火條件下,隨預回火時間的延長,晶內塊狀奧氏體體積分數先增加后趨于穩定;預回火促使晶內塊狀奧氏體形成,導致最終奧氏體晶粒顯著細化。隨著預回火溫度的升高,逆相變前滲碳體發生粗化,增加了晶內塊狀奧氏體的有效形核位點,此促進了晶內塊狀奧氏體的形成。此外,晶內塊狀奧氏體具有多重取向,晶內塊狀奧氏體的增加,使得逆相變后奧氏體晶粒顯著細化。本研究提供了一種在不改變鋼化學成分的條件下,通過控制滲碳體實現對逆相變晶內塊狀奧氏體形成和最終奧氏體晶粒尺寸調控的新方法。Abstract: Austenite reversion has been widely used in the traditional heat treatment of steels, and recently, it has been used in the fabrication of advanced high-strength steels. The microstructure of reverted austenite significantly influences the final microstructure and properties of steel; thus, it is crucial to understand the formation of globular austenite to accurately grasp its reversion behavior. In this paper, an Fe–2.5Mn–1.5Si–0.35C alloy was chosen as the research object, and the evolution of intragranular globular austenite and finally transformed austenite grain size were studied under different pre-tempering conditions using a metallographic optical microscope, scanning electron microscope, and electron backscatter diffraction. It was found that as the pre-tempering temperature was increased from 350 ℃ to 650 ℃, the volume fraction of intragranular globular austenite first increased and then rapidly decreased. At the pre-tempering temperature of 400 ℃, the volume fraction of intragranular globular austenite initially increased and remained stable thereafter, when the pre-tempering duration was increased from 1 to 10 h. Fine cementite particles were primarily formed immediately before the reversion in the non-tempered or low-temperature pre-tempered initial structures. This provided less effective nucleation sites for the formation of intragranular globular austenite. Therefore, lesser intragranular globular austenite grains were formed, thereby resulting in relatively coarse finally transformed austenite grains after reversion. The cementite particles were gradually coarsened as the pre-tempering temperature was increased to 550 ℃, thereby increasing the number of effective nucleation sites for the formation of intragranular globular austenite. Conversely, when the martensite samples were pre-tempered at a high temperature of 650 ℃, Mn is seriously enriched into the cementite particles before the reversion, largely reducing the driving force for reversion. This resulted in the growth of intragranular globular austenite under the partitioning local equilibrium mode, with a slow growth rate, resulting in a low volume fraction. Therefore pre-tempering can effectively promote the formation of intragranular globular austenite. Owing to its multiple orientations, increased intragranular globular austenite formation resulted in significantly refined austenite grains after reversion. This study provided a new strategy to regulate the formation of intragranular globular austenite and finally transformed austenite grain size by controlling the size and composition of cementite particles through pre-tempering without changing the chemical composition of the steel.
-
Key words:
- reversion /
- pre-tempering /
- globular austenite /
- austenite grain size /
- cementite
-
圖 3 初始淬火馬氏體及780 ℃保溫60 s后的逆變奧氏體微觀組織圖(OM: 光學顯微鏡, SEM: 掃描電鏡, PAGB: 原奧氏體晶界, TM: 回火馬氏體, γG(M): 塊狀奧氏體(淬火后為馬氏體), γA(M):針狀奧氏體(淬火后為馬氏體)). (a) 初始淬火馬氏體, OM; (b) 初始淬火馬氏體, SEM; (c) 逆變奧氏體, OM; (d) 逆變奧氏體, SEM
Figure 3. As-quenched martensite and partially reverted austenite microstructures after being heated at 780 ℃ for 60 s(OM: optical microscope, SEM: scanning electron microscope, PAGB: prior γ grain boundary, TM: tempered martensite, γG(M): globular γ (martensite at room temperature), γA(M): acicular γ (martensite at room temperature)): (a) as-quenched martensite, OM; (b) as-quenched martensite, SEM; (c) partially reverted austenite, OM; (d) partially reverted austenite, SEM
圖 5 不同溫度預回火馬氏體經780 ℃保溫5 s逆相變處理后的光學顯微組織圖: (a) TM350; (b) TM400; (c) TM450; (d) TM500; (e) TM550; (f) TM600; (g) TM650; (h)晶內塊狀奧氏體體積分數隨預回火溫度的變化
Figure 5. OM images after reversion (780 ℃ for 5 s) of martensite pre-tempered at various temperatures: (a) TM350; (b) TM400; (c) TM450; (d) TM500; (e) TM550; (f) TM600; (g) TM650; (h) change in the volume fraction of intragranular globular austenite against the pre-tempering temperature
圖 6 不同溫度預回火馬氏體經780 ℃保溫5 s逆相變處理后的顯微組織圖. (a) TM350, OM; (b) TM350, SEM; (c) TM550, OM; (d) TM550, SEM; (e) TM650, OM; (f) TM650, SEM
Figure 6. OM and SEM images after reversion (780 ℃ for 5 s) of martensite pre-tempered at various temperatures: (a) TM350, OM; (b) TM350, SEM; (c) TM550, OM; (d) TM550, SEM; (e) TM650, OM; (f) TM650, SEM
圖 7 不同預回火時間下逆變奧氏體(780 ℃保溫5 s)光學微觀組織圖. (a) TM1h; (b) TM2h; (c) TM5h; (d) TM7h; (e) TM10h;(f)晶內塊狀奧氏體體積分數隨預回火時間的變化
Figure 7. OM images after reversion (780 ℃ for 5 s) of austenite pre-tempered for various periods: (a) TM1h; (b)TM2h; (c)TM5h; (d) TM7h; (e) TM10h; (f) change in the volume fraction of intragranular globular austenite against the pre-tempering duration
圖 8 不同初始組織逆相變結束(825 ℃保溫15 s)后EBSD分析得到的淬火馬氏體(a, c, e)及相同區域重構獲得的原奧氏體晶粒(b, d, f)的IPF+BC圖: (a, b) As Q; (c, d) TM550; (e, f) TM650;(g)定量統計獲得的不同起始組織相變后奧氏體晶粒尺寸
Figure 8. IPF + BC figures of the (a, c, e) as-quenched martensite analyzed using EBSD immediately after reversion (825 ℃ for 15 s) and the (b, d, f) reconstructed prior austenite grains of the same area for various initial structures: (a,b) As Q; (c,d) TM550; (e,f) TM650; (g) quantified austenite grain size immediately after reversion for various initial structures
圖 10 不同起始組織逆相變前滲碳體微觀組織及尺寸分布圖. (a) TM350; (b) TM550; (c) TM650; (d) 尺寸分布 (
$d_{\text{θ}} ^{{\rm{ave}}}$ : 平均滲碳體顆粒尺寸)Figure 10. Microstructure and size distribution of cementite particles immediately before reversion for various initial structures: (a) TM350; (b) TM550; (c) TM650; (d) size distribution diagram (
$d_{\text{θ}} ^{{\rm{ave}}} $ : average θ particle size)表 1 實驗用鋼的主要化學成分(質量分數)
Table 1. Nominal composition of the alloy used in this study
% C Mn Si S P Al Fe 0.34 2.51 1.47 0.002 0.0048 0.028 Bal. 表 2 TM350和TM550逆相變前的滲碳體數密度分布
Table 2. Cementite number density distributions for TM350 and TM550 immediately before reversion
Type Number density
($d_{\text{θ}} ^{{\rm{ave}}} $≥100 nm)/
(1012 m?2)Number density ratio of
TM550 to TM350TM350 2.454 1.855 TM550 4.552 www.77susu.com -
參考文獻
[1] Grange R A. Strengthening steel by austenite grain refinement. Trans ASM, 1966, 59(1): 26 [2] Furuhara T, Kikumoto K, Saito H, et al. Phase transformation from fine-grained austenite. ISIJ Int, 2008, 48(8): 1038 doi: 10.2355/isijinternational.48.1038 [3] Matsumura N, Tokizane M. Austenite grain refinement and superplasticity in niobium microalloyed steel. ISIJ Int, 1986, 26(4): 315 doi: 10.2355/isijinternational1966.26.315 [4] Tokizane M, Ameyama K, Takao K. Ultra-fine austenite grain steel produced by thermomechanical processing. Scr Metall, 1988, 22(5): 697 doi: 10.1016/S0036-9748(88)80185-6 [5] Nikulin I, Sawaguchi T, Yoshinaka F, et al. Influence of cold rolling deformation mechanisms on the grain refinement of Fe–15Mn–10Cr–8Ni–4Si austenitic alloy. Mater Charact, 2020, 162: 110191 doi: 10.1016/j.matchar.2020.110191 [6] Mao W Q, Gao S, Bai Y, et al. Effective grain size refinement of an Fe–24Ni–0.3C metastable austenitic steel by a modified two-step cold rolling and annealing process utilizing the deformation-induced martensitic transformation and its reverse transformation. J Mater Res Technol, 2022, 17: 2690 [7] Nehrenberg A E. Growth of austenite in cold-rolled tempered martensite. JOM, 1952, 4(2): 181 doi: 10.1007/BF03397668 [8] Kimmins S T, Gooch D J. Austenite memory effect in 1Cr–1Mo–0.75V(Ti, B) steel. Met Sci, 1983, 17(11): 519 [9] Hara T, Maruyama N, Shinohara Y, et al. Abnormal α to γ transformation behavior of steels with a martensite and bainite microstructure at a slow reheating rate. ISIJ Int, 2009, 49(11): 1792 doi: 10.2355/isijinternational.49.1792 [10] Nakada N, Tsuchiyama T, Takaki S, et al. Temperature dependence of austenite nucleation behavior from lath martensite. ISIJ Int, 2011, 51(2): 299 doi: 10.2355/isijinternational.51.299 [11] Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel. Acta Mater, 2011, 59(10): 4002 doi: 10.1016/j.actamat.2011.03.025 [12] Nakada N, Tsuchiyama T, Takaki S, et al. Variant selection of reversed austenite in lath martensite. ISIJ Int, 2007, 47(10): 1527 doi: 10.2355/isijinternational.47.1527 [13] Dai Z B, Chen H, Ding R, et al. Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite. Mater Sci Eng R Rep, 2021, 143: 100590 doi: 10.1016/j.mser.2020.100590 [14] Li L, Mi Z L, Wang Z, et al. Modified quenching temperature selection method for partial austenitization quenching and partitioning steel. Mater Res Express, 2018, 5(6): 66553 doi: 10.1088/2053-1591/aacd1a [15] Matsuda S, Okamura Y. Reverse transformation of low-carbon low alloy steels. Tetsu-to-Hagane, 1974, 60(2): 226 doi: 10.2355/tetsutohagane1955.60.2_226 [16] Plichta M R, Aaronson H I. Influence of alloying elements upon the morphology of austenite formed from martensite in Fe–C–X alloys. Metall Mater Trans B, 1974, 5(12): 2611 doi: 10.1007/BF02643888 [17] Seiichi W, Tatsuro K. On the formation of austenite grains from prior martensitic structure. Tetsu-to-Hagane, 1975, 61(1): 96 doi: 10.2355/tetsutohagane1955.61.1_96 [18] Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater, 2014, 65: 251 doi: 10.1016/j.actamat.2013.10.067 [19] Liu Z Q, Miyamoto G, Yang Z G, et al. Excess carbon enrichment in austenite during intercritical annealing. Metall Mater Trans A, 2013, 44(11): 4872 doi: 10.1007/s11661-013-1973-7 [20] Liu Z Q, Miyamoto G, Yang Z G, et al. Effects of pre-tempering on intercritical annealing in Fe–2Mn–0.3C alloy. Metall Mater Trans A, 2014, 45(12): 5290 doi: 10.1007/s11661-014-2519-3 [21] Zhang X G, Miyamoto G, Toji Y, et al. Orientation of austenite reverted from martensite in Fe–2Mn–1.5Si–0.3C alloy. Acta Mater, 2018, 144: 601 [22] Zhang X G, Miyamoto G, Kaneshita T, et al. Growth mode of austenite during reversion from martensite in Fe–2Mn–1.5Si–0.3C alloy: A transition in kinetics and morphology. Acta Mater, 2018, 154: 1 [23] Zhang X G, Miyamoto G, Toji Y, et al. Role of cementite and retained austenite on austenite reversion from martensite and bainite in Fe–2Mn–1.5Si–0.3C alloy. Acta Mater, 2021, 209: 116772 [24] Zhang X G, Ren Y J, Zhang J, et al. Effects of prior austenite grain size on reversion kinetics of different crystallographic austenite in a low carbon steel. Mater Charact, 2022, 190: 112025 doi: 10.1016/j.matchar.2022.112025 [25] Zhang X G, Miyamoto G, Toji Y, et al. Effects of heating rate on formation of globular and acicular austenite during reversion from martensite. Metals, 2019, 9: 266 doi: 10.3390/met9020266 [26] Zhang X G, Miyamoto G, Furuhara T. Effects of heating rate on microstructure of reverted austenite. Iron &Steel, 2019, 54(2): 83張獻光, 宮本吾郎, 古原忠. 加熱速率對逆轉變奧氏體微觀組織的影響. 鋼鐵, 2019, 54(2):83 [27] Ding R, Tang D, Chen Y L, et al. Effects of annealing temperature on the microstructure and mechanical properties of TRIP steel with annealed martensitic matrix. J Univ Sci Technol Beijing, 2014, 36(11): 1476丁然, 唐荻, 陳銀莉, 等. 退火溫度對退火馬氏體基TRIP鋼顯微組織和力學性能的影響. 北京科技大學學報, 2014, 36(11):1476 [28] Yang D Z, Xiong Z P, Zhang C, et al. Effect of tempering time on microstructures and mechanical properties of an Fe–0.39C–3.69Mn medium Mn steel. J Iron Steel Res, 2021, 33(11): 1161楊德振, 熊志平, 張超, 等. 回火時間對Fe–0.39C–3.69Mn中錳鋼的組織和力學性能的影響. 鋼鐵研究學報, 2021, 33(11):1161 [29] Sugimoto K I, Kanda A, Kikuchi R, et al. Ductility and formability of newly developed high strength low alloy TRIP-aided sheet steels with annealed martensite matrix. ISIJ Int, 2002, 42(8): 910 doi: 10.2355/isijinternational.42.910 [30] Sakuma T, Nishizawa T. Quantitative metallography. Bull Jpn Inst Met, 1971, 10(5): 279 doi: 10.2320/materia1962.10.279佐久間健人, 西沢泰二. 定量金屬組織學. 日本金屬學會會報, 1971, 10(5):279 doi: 10.2320/materia1962.10.279 [31] Miyamoto G, Usuki H, Li Z D, et al. Effects of Mn, Si and Cr addition on reverse transformation at 1073 K from spheroidized cementite structure in Fe–0.6 mass% C alloy. Acta Mater, 2010, 58(13): 4492 [32] Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels. Acta Mater, 2006, 54(19): 5323 doi: 10.1016/j.actamat.2006.07.009 [33] Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe–C alloys. Acta Mater, 2003, 51(6): 1789 doi: 10.1016/S1359-6454(02)00577-3 [34] Miyamoto G, Takayama N, Furuhara T. Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis. Scr Mater, 2009, 60(12): 1113 doi: 10.1016/j.scriptamat.2009.02.053 [35] Miyamoto G, Iwata N, Takayama N, et al. Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite. Acta Mater, 2010, 58(19): 6393 doi: 10.1016/j.actamat.2010.08.001 [36] Miyamoto G, Shinyoshi T, Yamaguchi J, et al. Crystallography of intragranular ferrite formed on (MnS+V(C, N)) complex precipitate in austenite. Scr Mater, 2003, 48(4): 371 doi: 10.1016/S1359-6462(02)00451-7 [37] Babu S S, Hono K, Sakurai T. Atom probe field ion microscopy study of the partitioning of substitutional elements during tempering of a low-alloy steel martensite. Metall Mater Trans A, 1994, 25(3): 499 doi: 10.1007/BF02651591 [38] Zhu C, Xiong X Y, Cerezo A, et al. Three-dimensional atom probe characterization of alloy element partitioning in cementite during tempering of alloy steel. Ultramicroscopy, 2007, 107(9): 808 doi: 10.1016/j.ultramic.2007.02.033 [39] Wu Y X, Sun W W, Styles M J, et al. Cementite coarsening during the tempering of Fe–C–Mn martensite. Acta Mater, 2018, 159: 209 doi: 10.1016/j.actamat.2018.08.023 -