-
摘要: 為解決特種變壓器生產車間實時化管控弱、調度決策能力差、過程監控不直觀、運行態勢不明朗的問題,從特種變壓器車間的數字孿生建模、知識信息融合、運行可靠性分析和可視化表達等方面入手,探討了一種特種變壓器車間數字孿生系統的新型體系架構;闡述了基于“5維度-4視角”模型、高性能算力孿生引擎及沉浸式可視化技術的數字孿生建模表達方法;研究了數字孿生車間指標體系的構建方法以及車間知識信息與數字孿生的融合方法;基于層次分析理論和關聯熵方法,構建了一種基于復合物元信息熵的車間數字孿生系統可靠性分析模型;最后,以某特種變壓器生產車間為應用案例,基于上述方法和模型,結合實際生產過程開發了原型數字孿生系統,實現了特種變壓器車間的多維多尺度實時智能管控,驗證了該方法的合理性和有效性.Abstract: To address the weak real-time control, poor decision-making ability, nonintuitive process monitoring, and unclear operation situation problems in a special transformer production workshop, a new digital twin system architecture is discussed for the workshop, focusing on digital twin modeling, knowledge information fusion, operation reliability analysis, and visual representation. The modeling and expression of the digital twin were based on the “Five dimensions–Four perspectives” engine, where the “Five dimensions” refer to physical entities, virtual objects, twin data, connection mapping, and services and the “Four perspectives” refer to geometric, physical, behavioral, and rule models, with high-performance computing power and immersive visualization technology. This paper describes the method of 3D modeling, data mapping, computing power development, and visual expression for the digital twin. A deep fusion method between knowledge and digital twin was studied based on the principle of tree growth. This model includes two key parts. First, a design of the index system having a hierarchical structure based on the principle of tree growth was proposed. Indices were divided into four levels—workshop, production line, station, and equipment levels—based on the workshop scale, vertically constituting the main branches of the index tree model. From the perspective of the life cycle of production activities, indices were divided into planning parameters, process parameters, work order parameters, quality parameters, equipment parameters, and so on. Thus, a complete index system of the digital twin workshop was established. Furthermore, the photosynthesis and the transport of organic products in the tree were simulated by formally describing the deep fusion mechanism of knowledge and digital twin in transformer workshops, and diverse intelligent computing units were built to mine knowledge and identify information from disorganized workshop operation big data. Finally, a multilevel and complex model was constructed to integrate the knowledge and digital twin of a special transformer workshop based on the computation model, and the real-time monitoring and control of the workshop were realized. An operational reliability analysis model of the digital twin system for special transformer workshops based on composite matter element information entropy was also proposed, which combines the analytical hierarchy process and the correlation entropy method. A composite matter element model was systematically built based on the historical operational data of the transformer workshop, which can be used for the real-time monitoring of the operational reliability and the evolution of any trends in the operational parameters. Thus, a prototype digital twin system was developed, and its rationality and effectiveness were verified using the special transformer workshop as the application case. The research results have an outstanding reference for the construction of digital twin systems and the intelligent management of transformer workshops.
-
Key words:
- digital twin /
- special transformer /
- construction method /
- digital workshop /
- knowledge fusion
-
表 1 某月特種變壓器車間的運行指標歷史數據
Table 1. Historical data of special transformer workshop for a month
Time S1/% S2/min S3/% S4/% S5/min S6/h S7/% S8/% S9 S10/% T1 85 350 92 65 60 100 93 70 3 100 T2 90 340 96 67 60 100 95 98 5 99 T3 95 340 95 66 55 100 95 100 4 100 … … … … … … … … … … … Ti 95 335 97 70 57 101 96 100 3 100 … … … … … … … … … … … T30 96 330 97 71 50 101 95 100 3 100 表 2 復合物元信息熵權重
Table 2. Information entropy weight of the composite matter element
Index Subjective weight Correlation entropy
weight $ \omega '' $Comprehensive
weight $ \omega $S1 14.028 8.572 11.98 S2 6.245 8.765 5.45 S3 10.95 7.499 8.18 S4 12.481 13.081 16.27 S5 9.394 27.682 25.91 S6 7.819 6.513 5.07 S7 9.391 6.881 6.44 S8 12.485 6.513 8.1 S9 9.388 8.364 7.82 S10 7.819 6.129 4.77 www.77susu.com -
參考文獻
[1] Negri E, Fumagalli L, Macchi M. A review of the roles of digital twin in CPS-based production systems. Procedia Manuf, 2017, 11: 939 doi: 10.1016/j.promfg.2017.07.198 [2] Tao F, Liu W R, Zhang M, et al. Five-dimension digital twin mode and its ten applications. Comput Integr Manuf Syst, 2019, 25(1): 1 doi: 10.13196/j.cims.2019.01.001陶飛, 劉蔚然, 張萌, 等. 數字孿生五維模型及十大領域應用. 計算機集成制造系統, 2019, 25(1):1 doi: 10.13196/j.cims.2019.01.001 [3] Tao F, Zhang H, Qi Q L, et al. Ten questions towards digital twin: Analysis and thinking. Comput Integr Manuf Syst, 2020, 26(1): 1 doi: 10.13196/j.cims.2020.01.001陶飛, 張賀, 戚慶林, 等. 數字孿生十問:分析與思考. 計算機集成制造系統, 2020, 26(1):1 doi: 10.13196/j.cims.2020.01.001 [4] Tao F, Zhang C Y, Qi Q L, et al. Digital twin maturity model. Comput Integr Manuf Syst, 2022, 28(5): 1267 doi: 10.13196/j.cims.2022.05.001陶飛, 張辰源, 戚慶林, 等. 數字孿生成熟度模型. 計算機集成制造系統, 2022, 28(5):1267 doi: 10.13196/j.cims.2022.05.001 [5] Li H, Wang H Q, Liu G, et al. Concept, system structure and operating mode of industrial digital twin system. Comput Integr Manuf Syst, 2021, 27(12): 3373 doi: 10.13196/j.cims.2021.12.001李浩, 王昊琪, 劉根, 等. 工業數字孿生系統的概念、系統結構與運行模式. 計算機集成制造系統, 2021, 27(12):3373 doi: 10.13196/j.cims.2021.12.001 [6] Qi Q L, Tao F, Hu T L, et al. Enabling technologies and tools for digital twin. J Manuf Syst, 2021, 58: 3 doi: 10.1016/j.jmsy.2019.10.001 [7] Wu Y, Chen X, Lyu F, et al. Guest editorial: Convergence of digital twin and 6G enabled edge intelligence: Theories, algorithms and applications. China Commun, 2023, 22(2): III [8] Schroeder G N, Steinmetz C, Pereira C E, et al. Digital twin data modeling with AutomationML and a communication methodology for data exchange. IFAC PapersOnLine, 2016, 49(30): 12 doi: 10.1016/j.ifacol.2016.11.115 [9] Ding K, Zhang X D, Zhou G H, et al. Digital twin-based multi dimensional and multi-scale modeling of smart manufacturing spaces. Comput Integr Manuf Syst, 2019, 25(6): 1491 doi: 10.13196/j.cims.2019.06.017丁凱, 張旭東, 周光輝, 等. 基于數字孿生的多維多尺度智能制造空間及其建模方法. 計算機集成制造系統, 2019, 25(6):1491 doi: 10.13196/j.cims.2019.06.017 [10] Zhang C, Zhou G H, Xiao J C, et al. Multi-dimensional and multi-scale modeling and edge-cloud collaborative configuration method for digital twin manufacturing cell [J/OL]. Computer Integrated Manufacturing Systems (2021-06-01) [2022-09-26]. http://kns.cnki.net/kcms/detail/11.5946.TP.20210601.0907.004.html.張超, 周光輝, 肖佳誠, 等. 數字孿生制造單元多維多尺度建模與邊—云協同配置方法[J/OL]. 計算機集成制造系統 (2021-06-01) [2022-09-26]. https://kns.cnki.net/kcms/detail/11.5946.TP.20210601.0907.004.html [11] Wei Y X, Guo L, Cheng L X, et al. Research and implementation of digital twin workshop based on real-time data driven. Comput Integr Manuf Syst, 2021, 27(2): 352 doi: 10.13196/j.cims.2021.02.004魏一雄, 郭磊, 陳亮希, 等. 基于實時數據驅動的數字孿生車間研究及實現. 計算機集成制造系統, 2021, 27(2):352 doi: 10.13196/j.cims.2021.02.004 [12] Hou Z H, He W P. Modeling and control of digital twin-based aircraft assembly state inspection robot. Comput Integr Manuf Syst, 2021, 27(4): 981 doi: 10.13196/j.cims.2021.04.002侯正航, 何衛平. 基于數字孿生的飛機裝配狀態巡檢機器人的建模與控制. 計算機集成制造系統, 2021, 27(4):981 doi: 10.13196/j.cims.2021.04.002 [13] Wu P Y, Guo Y, Huang S H, et al. Visual real-time monitoring method for discrete manufacturing wo-rkshop based on digital twin. Comput Integr Manuf Syst, 2021, 27(6): 1605 doi: 10.13196/j.cims.2021.06.007吳鵬興, 郭宇, 黃少華, 等. 基于數字孿生的離散制造車間可視化實時監控方法. 計算機集成制造系統, 2021, 27(6):1605 doi: 10.13196/j.cims.2021.06.007 [14] Jiang H F, Ding G F, Xiao T, et al. Digital twin evolution model and its applications in intelligent manufacturing [J/OL]. Journal of Southwest Jiaotong University (2021-07-06) [2022-09-26]. http://kns.cnki.net/kcms/detail/51.1277.U.20210706.1043.004.html江海凡, 丁國富, 肖通, 等. 數字孿生演進模型及其在智能制造中的應用[J/OL]. 西南交通大學學報 (2021-07-06) [2022-09-26]. https://kns.cnki.net/kcms/detail/51.1277.U.20210706.1043.004.html [15] Sun X M, Liu S M, Shen X W, et al. Digital twin driven intelligent assembly method for high pr-ecision products. Comput Integr Manuf Syst, 2022, 28(6): 1704 doi: 10.13196/j.cims.2022.06.010孫學民, 劉世民, 申興旺, 等. 數字孿生驅動的高精密產品智能化裝配方法. 計算機集成制造系統, 2022, 28(6):1704 doi: 10.13196/j.cims.2022.06.010 [16] Hu X, Liu J H, Zhang C B, et al. Digital twin based management method and application for the co-mplex products assembly process. Comput Integr Manuf Syst, 2021, 27(2): 642 doi: 10.13196/j.cims.2021.02.028胡興, 劉檢華, 莊存波, 等. 基于數字孿生的復雜產品裝配過程管控方法與應用. 計算機集成制造系統, 2021, 27(2):642 doi: 10.13196/j.cims.2021.02.028 [17] Ma J, Wang Y C, Zhao M, et al. Visualization management and control methods of production cell based on digital twin. Comput Integr Manuf Syst, 2021, 27(5): 1256 doi: 10.13196/j.cims.2021.05.002馬靖, 王譯晨, 趙明, 等. 基于數字孿生的生產單元可視化管控. 計算機集成制造系統, 2021, 27(5):1256 doi: 10.13196/j.cims.2021.05.002 [18] Liu J, Zhuang C B, Liu J H, et al. Online prediction technology of workshop operating status based on digital twin. Comput Integr Manuf Syst, 2021, 27(2): 467 doi: 10.13196/j.cims.2021.02.014劉娟, 莊存波, 劉檢華, 等. 基于數字孿生的生產車間運行狀態在線預測. 計算機集成制造系統, 2021, 27(2):467 doi: 10.13196/j.cims.2021.02.014 [19] Deng J X, Wei S F, Shi X L, et al. Digital twin-based distribution management system. Comput Integr Manuf Syst, 2021, 27(2): 585 doi: 10.13196/j.cims.2021.02.024鄧建新, 衛世豐, 石先蓮, 等. 基于數字孿生的配送管理系統研究. 計算機集成制造系統, 2021, 27(2):585 doi: 10.13196/j.cims.2021.02.024 [20] Xu M J, Liu S M, Sheng H, et al. Burr control of weak rigid drilling process driven by digital twin [J/OL]. Computer Integrated Manufacturing Systems (2021-06-18) [2022-09-26]. http://kns.cnki.net/kcms/detail/11.5946.TP.20210617.1730.014.html許敏俊, 劉世民, 沈慧, 等. 數字孿生驅動下的弱剛性鉆削毛刺控制[J/OL]. 計算機集成制造系統 (2021-06-18) [2022-09-26]. http://kns.cnki.net/kcms/detail/11.5946.TP.20210617.1730.014.html [21] Wang Y, Wei Y H, Liu G X. Gear box operation condition evaluation based on digit-al twin. Modul Mach Tool Autom Manuf Tech, 2022(7): 48 doi: 10.13462/j.cnki.mmtamt.2022.07.012王炎, 魏永合, 劉光昕. 基于數字孿生的齒輪箱運行狀態評估. 組合機床與自動化加工技術, 2022(7):48 doi: 10.13462/j.cnki.mmtamt.2022.07.012 [22] Tuegel E J, Ingraffea A R, Eason T G, et al. Reengineering aircraft structural life prediction using a digital twin. Int J Aerosp Eng, 2011, 2011: 1 [23] Uhlemann T H J, Lehmann C, Steinhilper R. The digital twin: realizing the cyber-physical production system for industry 4.0. Procedia CIRP, 2017, 61: 335 doi: 10.1016/j.procir.2016.11.152 [24] S?derberg R, W?rmefjord K, Carlson J S, et al. Toward a digital twin for real-time geometry assurance in individualized production. CIRP Ann, 2017, 66(1): 137 doi: 10.1016/j.cirp.2017.04.038 [25] Zhang H, Qi Q L, Tao F. A multi-scale modeling method for digital twin shop-floor. J Manuf Syst, 2022, 62: 417 doi: 10.1016/j.jmsy.2021.12.011 [26] Liu L Y, Du H X, Wang H F, et al. Construction and application of digital twin system for production process in workshop. Comput Integr Manuf Syst, 2019, 25(6): 1536 doi: 10.13196/j.cims.2019.06.021柳林燕, 杜宏祥, 汪惠芬, 等. 車間生產過程數字孿生系統構建及應用. 計算機集成制造系統, 2019, 25(6):1536 doi: 10.13196/j.cims.2019.06.021 [27] Tao F, Zhang M, Cheng J F, et al. Digital twin workshop: A new paradigm for future workshop. Comput Integr Manuf Syst, 2017, 23(1): 1 doi: 10.13196/j.cims.2017.01.001陶飛, 張萌, 程江峰, 等. 數字孿生車間——一種未來車間運行新模式. 計算機集成制造系統, 2017, 23(1):1 doi: 10.13196/j.cims.2017.01.001 [28] Wang X C, Bai Q S, Wang P, et al. Research progress on digital twin modeling for micro milling. Aeronaut Manuf Technol, 2021, 64(20): 56 doi: 10.16080/j.issn1671-833x.2021.20.056王旭初, 白清順, 王鵬, 等. 微細銑削的數字孿生建模技術研究進展. 航空制造技術, 2021, 64(20):56 doi: 10.16080/j.issn1671-833x.2021.20.056 -