<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

不同改質劑對硅錳渣微晶玻璃析晶性能調控的比較

楊金成 李宇 楊天

楊金成, 李宇, 楊天. 不同改質劑對硅錳渣微晶玻璃析晶性能調控的比較[J]. 工程科學學報, 2023, 45(11): 1918-1927. doi: 10.13374/j.issn2095-9389.2022.09.24.003
引用本文: 楊金成, 李宇, 楊天. 不同改質劑對硅錳渣微晶玻璃析晶性能調控的比較[J]. 工程科學學報, 2023, 45(11): 1918-1927. doi: 10.13374/j.issn2095-9389.2022.09.24.003
YANG Jincheng, LI Yu, YANG Tian. Comparative of different modifiers on the crystallization properties of glass–ceramics derived from silicon manganese slag[J]. Chinese Journal of Engineering, 2023, 45(11): 1918-1927. doi: 10.13374/j.issn2095-9389.2022.09.24.003
Citation: YANG Jincheng, LI Yu, YANG Tian. Comparative of different modifiers on the crystallization properties of glass–ceramics derived from silicon manganese slag[J]. Chinese Journal of Engineering, 2023, 45(11): 1918-1927. doi: 10.13374/j.issn2095-9389.2022.09.24.003

不同改質劑對硅錳渣微晶玻璃析晶性能調控的比較

doi: 10.13374/j.issn2095-9389.2022.09.24.003
基金項目: 國家自然科學基金資助項目(U1960201)
詳細信息
    通訊作者:

    E-mail: leeuu00@sina.com

  • 中圖分類號: TF09

Comparative of different modifiers on the crystallization properties of glass–ceramics derived from silicon manganese slag

More Information
  • 摘要: 以硅錳渣為主要原料,分別添加高硅、高鐵和含鉻的改質劑硅石、鐵鱗和鉻鐵渣,采用Petrurgic一步法制備了微晶玻璃,對微晶玻璃樣品進行X射線衍射(XRD) 、差示掃描量熱分析(DSC)、掃描電子顯微鏡(SEM-EDS)等測試和分析,討論了添加不同改質劑對硅錳渣微晶玻璃礦相和性能的影響規律. 研究表明: 將改質熔渣冷卻至析晶溫度保溫和700 ℃退火后,獲得滿足天然花崗巖石材對性能要求的微晶玻璃. 相對于原硅錳渣,改質熔渣的析晶性能都獲得了顯著提升,其中鐵鱗和鉻鐵渣更有利于促進粒度為0.2~0.5 μm粒狀或短棒狀輝石晶體形成,這些晶體為固溶了Fe、Mn離子的普通輝石(Ca(Mg,Fe,Al)(Si,Al)2O6)和鈣錳輝石(CaMnSi2O6)等. 添加改質劑均改變了硅錳渣中Mn離子的賦存形態,原渣中Mn離子主要以玻璃相和硫化錳形式存在,改質后樣品中的錳離子主要賦存于鈣錳輝石中.

     

  • 圖  1  原料的XRD圖譜. (a) 硅錳渣; (b) 硅石; (c) 鐵鱗; (d) 鉻鐵渣

    Figure  1.  XRD patterns of raw materials: (a) silicon-manganese slag; (b) silica; (c) iron scale; (d) ferrochrome slag

    圖  2  硅錳渣制備微晶玻璃的熱制度

    Figure  2.  Thermal regime for preparing glass–ceramics from silicon–manganese slag

    圖  3  基礎玻璃水淬渣的DSC曲線

    Figure  3.  DSC curve of basic glass water-quenched slag

    圖  4  S1~S4樣品XRD分析

    Figure  4.  XRD patterns of S1?S4 samples

    圖  5  不同Al2O3質量分數的CaO–SiO2–MgO–Al2O3系相圖. (a) 13%; (b) 15%

    Figure  5.  Phase diagram of CaO–SiO2–MgO–Al2O3 with different Al2O3: (a) 13% mass fraction; (b) 15% mass fraction

    圖  6  微晶玻璃樣品的SEM圖. (a) S1; (b) S2; (c) S3; (d) S4

    Figure  6.  SEM images of glass–ceramic samples: (a) S1; (b) S2; (c) S3; (d) S4

    圖  7  S2~S4微晶玻璃樣品的能譜EDS圖. (a) Pt.1; (b) Pt.2; (c) Pt.3; (d) Pt.4

    Figure  7.  EDS analysis of S2?S4 glass-ceramic samples: (a) Pt.1; (b) Pt.2; (c) Pt.3; (d) Pt.4

    圖  8  S1~S4樣品的力學性能. (a) 抗折強度; (b) 體積密度; (c) 吸水率

    Figure  8.  Mechanical properties of S1?S4 samples: (a) flexural strength; (b) bulk density; (c) water absorption

    表  1  原料的化學組成(質量分數)

    Table  1.   Chemical composition of the raw material %

    Raw material composition CaO SiO2 Al2O3 MgO MnO Fe2O3* K2O P2O5 TiO2 Cr2O3 SO3* BaO Other
    Silicon manganese slag 27.27 38.40 13.24 3.60 7.92 2.27 1.60 0.41 0.25 0.26 1.45 2.49 0.84
    Silica 3.50 85.40 2.58 1.05 2.92 2.14 1.02 0.42 0.11 0.20 0.66
    Iron scale 0.40 3.46 1.04 0.54 87.62 0.48 5.08 0.79 0.59
    Ferrochrome slag 3.30 28.78 24.16 27.08 0.42 4.21 0.17 0.38 0.80 8.00 2.25 0.45
    Notes:“*” For only the elements contents were detected by XRF, the results of all Fe and S elements were presented here in the form of Fe2O3 and SO3.
    下載: 導出CSV

    表  2  配合料的主要化學組成(質量分數)

    Table  2.   Chemical composition of the formula %

    Sample CaO SiO2 Al2O3 MgO MnO Fe2O3 K2O P2O5 TiO2 Cr2O3 SO3 BaO Other
    S1 27.27 38.40 13.24 3.60 7.92 2.27 1.60 0.41 0.25 0.26 1.45 2.49 0.84
    S2 24.89 43.10 12.17 3.35 7.42 2.26 1.54 0.41 0.24 0.25 1.31 2.24 0.82
    S3 24.58 34.91 12.02 3.24 7.18 10.81 1.44 0.42 0.22 0.74 1.39 2.24 0.81
    S4 24.87 37.44 14.33 5.95 7.17 2.46 1.46 0.41 0.31 1.03 1.53 2.24 0.80
    下載: 導出CSV

    表  3  熔渣改質具有的顯熱和改質劑熔解需要的熱量對比

    Table  3.   Comparison of sensible heat of slag modification and required heat of melting modifier

    Sample Slag appreciable heat, Qs /J Modifier absorbs heat, Qen/J
    Silicon–manganese slag (90%, mass fraction)+silica (10%, mass fraction)(S2) 31356 15203
    Silicon–manganese slag (90%, mass fraction)+iron scale (10%, mass fraction)(S3) 31356 12495
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Li X, Peng F. Analysis of the current status and development trend of China’s ferroalloy industry. Metallur Economic Manag, 2013(5): 3 doi: 10.3969/j.issn.1002-1779.2013.05.007

    李曉, 彭鋒. 我國鐵合金行業現狀及發展趨勢分析. 冶金經濟與管理, 2013(5):3 doi: 10.3969/j.issn.1002-1779.2013.05.007
    [2] Li Y, Liu X M, Zhang Z Q. Metallurgical Solid Waste Material Utilization. Beijing: China Building Materials Industry Press, 2022

    李宇, 劉曉明, 張增起. 冶金固廢材料化利用. 北京:中國建材工業出版社, 2022
    [3] Xin X, Tan Z X, Zhao J X, et al. Heat treatment process optimization of microcrystalline cast stone from silico–manganese slag by one-step preparation. J Chin Ceram Soc, 2022, 50(6): 1677 doi: 10.14062/j.issn.0454-5648.20210843

    辛鑫, 譚澤馨, 趙俊學, 等. 硅錳渣一步法制備微晶鑄石的熱處理工藝及性能. 硅酸鹽學報, 2022, 50(6):1677 doi: 10.14062/j.issn.0454-5648.20210843
    [4] Dai W, Shu L. Process Technology of Ferroalloy Production. Beijing: Metallurgical Industry Press, 2015

    戴維, 舒莉. 鐵合金工程技術. 北京:冶金工業出版社, 2015
    [5] Nath S K, Kumar S. Evaluation of the suitability of ground granulated silico–manganese slag in Portland slag cement. Constr Build Mater, 2016, 125: 127 doi: 10.1016/j.conbuildmat.2016.08.025
    [6] Patil A V, Pande A M. Behaviour of silico manganese slag manufactured aggregate as material for road and rail track construction. Adv Mater Res, 2011, 255-260: 3258 doi: 10.4028/www.scientific.net/AMR.255-260.3258
    [7] Choi H B, Kim J M. Properties of silicon manganese slag as an aggregate for concrete depending on cooling conditions. J Mater Cycles Waste Manag, 2020, 22: 1067 doi: 10.1007/s10163-020-01003-8
    [8] Li J Q, Mu Y T. Discussion of the feasibility about cinder wool prepared by ferromanganesesilicon slag. Ferro-Alloys, 2016, 47(1): 35 doi: 10.16122/j.cnki.issn1001-1943.2016.01.009

    李俊強, 穆宇同. 淺談利用錳硅渣制備礦渣棉制品的可行性. 鐵合金, 2016, 47(1):35 doi: 10.16122/j.cnki.issn1001-1943.2016.01.009
    [9] Miao X W, Bai Z T, Qiu G B, et al. Preparation of transparent Mn-doped CaF2 glass–ceramics from silicon–manganese slag: Dependence of colour-controllable change on slag addition and crystallization behavior. J Eur Ceram Soc, 2020, 40(8): 3249 doi: 10.1016/j.jeurceramsoc.2020.02.029
    [10] Khater G A. The use of Saudi slag for the production of glass–ceramic materials. Ceram Int, 2002, 28(1): 59 doi: 10.1016/S0272-8842(01)00058-X
    [11] Yang L, Zhang H B, Cao J X. Preparation of ecology water penetrable brick using silicon manganese slag. New Build Mater, 2007, 34(6): 27 doi: 10.3969/j.issn.1001-702X.2007.06.010

    楊林, 張洪波, 曹建新. 硅錳渣制生態滲水磚. 新型建筑材料, 2007, 34(6):27 doi: 10.3969/j.issn.1001-702X.2007.06.010
    [12] Rawlings R D, Wu J P, Boccaccini A R. Glass–ceramics: Their production from wastes—a review. J Mater Sci, 2006, 41(3): 733 doi: 10.1007/s10853-006-6554-3
    [13] Zhao X Y, Yang T, Yang J C, et al. Effects of temperature regime on structure and properties of copper slag glass–ceramics by one-step method. Nonferrous Met Sci Eng, 2023, 14(1): 8 doi: 10.13264/j.cnki.ysjskx.2023.01.012

    趙新宇, 楊天, 楊金成, 等. 熱制度對銅渣微晶玻璃結構和性能的影響規律. 有色金屬科學與工程, 2023, 14(1):8 doi: 10.13264/j.cnki.ysjskx.2023.01.012
    [14] Mei S X, Pei K P, He F, et al. Structure and properties of molten blast furnace slag glass–ceramics. J Synth Cryst, 2017, 46(4): 698 doi: 10.3969/j.issn.1000-985X.2017.04.023

    梅書霞, 裴可鵬, 何峰, 等. 高爐熔渣微晶玻璃的結構與性能研究. 人工晶體學報, 2017, 46(4):698 doi: 10.3969/j.issn.1000-985X.2017.04.023
    [15] Shu Z, Zhou J, Wang Y X. The preparation of cast stone from thermal phosphorous slag liquid. Acta Petrol Mineral, 2008, 27(2): 152 doi: 10.3969/j.issn.1000-6524.2008.02.007

    舒杼, 周俊, 王焰新. 利用高溫磷渣液直接制備微晶鑄石的模擬研究. 巖石礦物學雜志, 2008, 27(2):152 doi: 10.3969/j.issn.1000-6524.2008.02.007
    [16] Jilin Ferroalloy Co., Ltd., Institute of Geology, Chinese Academy of Sciences. Direct production of cast stone from hot slag of ferroalloy. Nonferrous Met, 1973(Suppl 1): 1

    吉林鐵合金廠, 中國科學院地質研究所. 利用鐵合金的熾熱爐渣直接生產鑄石. 有色金屬, 1973(增刊1):1
    [17] Liu X P, Pan G F, Zhao Y F, et al. Current status of Mn pollution in groundwater and progress in treatment technology. Mod Chem Res, 2021(23): 89 doi: 10.3969/j.issn.1672-8114.2021.23.030

    劉學鵬, 潘高峰, 趙遙菲, 等. 地下水中錳污染現狀及治理技術進展. 當代化工研究, 2021(23):89 doi: 10.3969/j.issn.1672-8114.2021.23.030
    [18] Mudersbach D, Drissen P, Motz H. Improved slag qualities by liquid slag treatment // The 2nd International Slag Valorization Symposium. Leuven, 2011: 299
    [19] Wang W, Liao W, Wu X R, et al. Study on occurrence and concentrating behavior of chromium in stainless steel slag. Multipurp Util Miner Resour, 2012(3): 42 doi: 10.3969/j.issn.1000-6532.2012.03.011

    王偉, 廖偉, 武杏榮, 等. 不銹鋼渣中鉻的賦存狀態與鉻的富集行為研究. 礦產綜合利用, 2012(3):42 doi: 10.3969/j.issn.1000-6532.2012.03.011
    [20] Krausova K, Gautron L, Karnis A, et al. Glass ceramics and mineral materials for the immobilization of lead and cadmium. Ceram Int, 2016, 42(7): 8779 doi: 10.1016/j.ceramint.2016.02.119
    [21] Cao L H, Zhao Q. Influence of Al2O3 modification on enrichment behavior of chromium in stainless steel slag. Steelmaking, 2019, 35(5): 75

    操龍虎, 趙青. Al2O3對不銹鋼渣中鉻富集行為的影響機制. 煉鋼, 2019, 35(5):75
    [22] Dai W B. Study on Steel Slag Hot Modification Process, Equipment and Preparation for GlassCeramics Manufacturing [Dissertation]. Beijing: University of Science and Technology Beijing, 2016

    代文彬. 鋼渣熱態改質的工藝、裝備及制備微晶玻璃的研究[學術論文]. 北京:北京科技大學, 2016
    [23] Peng R X, Han H, Lin H J, et al. Effect of MgO content on structure and properties of glass-ceramics. Bull Chin Ceram Soc, 2021, 40(10): 3497 doi: 10.3969/j.issn.1001-1625.2021.10.gsytb202110043

    彭瑞欣, 韓韓, 林鴻劍, 等. MgO含量對微晶玻璃結構及性能的影響. 硅酸鹽通報, 2021, 40(10):3497 doi: 10.3969/j.issn.1001-1625.2021.10.gsytb202110043
    [24] Yang Z J, Li Y, Cang D Q, et al. Influence of Al2O3 content on structure and properties of glass–ceramics prepared with steel slag extracted iron and fly ash. Chin J Environ Eng, 2012, 6(12): 4631

    楊志杰, 李宇, 蒼大強, 等. Al2O3含量對提鐵后的鋼渣及粉煤灰微晶玻璃結構與性能的影響. 環境工程學報, 2012, 6(12):4631
    [25] Wang R X, Wang Y C, Cao P F, et al. Optimization of preparation of glass–ceramics nucleating agent by blast furnace slag and fly ash. China Ceram, 2020, 56(11): 44 doi: 10.16521/j.cnki.issn.1001-9642.2020.11.007

    王瑞鑫, 王藝慈, 曹鵬飛, 等. 高爐渣和粉煤灰制備微晶玻璃晶核劑的優化. 中國陶瓷, 2020, 56(11):44 doi: 10.16521/j.cnki.issn.1001-9642.2020.11.007
    [26] Wang H Y. Effect of Temperature Distribution on Crystal Phase and Properties of Molten Slag Cast Stone During Cooling [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    王宏宇. 熔渣鑄石降溫過程中溫度分布對晶相和性能的影響[學術論文]. 北京:北京科技大學, 2018
    [27] Yu Q C, Yan C P, Deng Y, et al. Effect of Fe2O3 on non-isothermal crystallization of CaO–MgO–Al2O3–SiO2 glass. Trans Nonferrous Met Soc China, 2015, 25(7): 2279 doi: 10.1016/S1003-6326(15)63842-0
    [28] Zhao M Z, Cao J W, Wang Z, et al. Insight into the dual effect of Fe2O3 addition on the crystallization of CaO–MgO–Al2O3–SiO2 glass–ceramics. J Non Cryst Solids, 2019, 513: 144 doi: 10.1016/j.jnoncrysol.2019.03.021
    [29] Li B, Wang S L, Fang Y. Effect of Cr2O3 addition on crystallization, microstructure and properties of Li2O–Al2O3–SiO2 glass–ceramics. J Alloys Compd, 2017, 693: 9 doi: 10.1016/j.jallcom.2016.09.043
    [30] Zhang S, Zhang Y L, Qu Z M. Effects of soluble Cr2O3 doping on the glass structure, microstructure, crystallization behavior, and properties of MgO–Al2O3–SiO2 sapphirine glass ceramics. Mater Chem Phys, 2020, 252: 123115 doi: 10.1016/j.matchemphys.2020.123115
    [31] Ye D N. Cast Stone Research : Proceedings. Beijing: Science Press, 1978

    葉大年. 鑄石研究:論文集. 北京:科學出版社, 1978
    [32] Khater G A, Abdel-Motelib A, El Manawi A W, et al. Glass–ceramics materials from basaltic rocks and some industrial waste. J Non Cryst Solids, 2012, 358(8): 1128 doi: 10.1016/j.jnoncrysol.2012.02.010
    [33] Lu X, Li Y, Ma S, et al. Thermal equilibrium analysis and experiment of molten slag modification by use of its sensible heat. Chin J Eng, 2016, 38(10): 1386

    盧翔, 李宇, 馬帥, 等. 利用顯熱對熔渣進行直接改質的熱平衡分析及試驗驗證. 工程科學學報, 2016, 38(10):1386
    [34] Li B W, Du Y S, Zhang X F, et al. Effects of iron oxide on the crystallization kinetics of Baiyunebo tailing glass–ceramics. Trans Indian Ceram Soc, 2013, 72(2): 119 doi: 10.1080/0371750X.2013.795718
    [35] Zheng X Z, Li D Z, Shen B M. A discussion about the conditions for the synthesis of clinopyroxenes in the nonequilibrium. Chin J Geol, 1973, 8(4): 307

    鄭學正, 李達周, 沈步明. 不平衡條件下單斜輝石形成的一些探討. 地質科學, 1973, 8(4):307
    [36] Ye D L. Handbook of Thermodynamic Data for Practical Inorganic Compounds. 2nd Ed. Beijing: Metallurgical Industry Press, 2002

    葉大倫. 實用無機物熱力學數據手冊. 2版. 北京:冶金工業出版社, 2002
  • 加載中
圖(8) / 表(3)
計量
  • 文章訪問數:  502
  • HTML全文瀏覽量:  53
  • PDF下載量:  101
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-09-24
  • 網絡出版日期:  2023-03-16
  • 刊出日期:  2023-11-01

目錄

    /

    返回文章
    返回