<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

微細粒礦物浮選捕收劑的應用及其機理研究進展

常自勇 李玉嬌 沈政昌 鄒來昌 王乾坤 孫忠梅 王化軍

常自勇, 李玉嬌, 沈政昌, 鄒來昌, 王乾坤, 孫忠梅, 王化軍. 微細粒礦物浮選捕收劑的應用及其機理研究進展[J]. 工程科學學報, 2023, 45(11): 1807-1819. doi: 10.13374/j.issn2095-9389.2022.09.23.003
引用本文: 常自勇, 李玉嬌, 沈政昌, 鄒來昌, 王乾坤, 孫忠梅, 王化軍. 微細粒礦物浮選捕收劑的應用及其機理研究進展[J]. 工程科學學報, 2023, 45(11): 1807-1819. doi: 10.13374/j.issn2095-9389.2022.09.23.003
CHANG Ziyong, LI Yujiao, SHEN Zhengchang, ZOU Laichang, WANG Qiankun, SUN Zhongmei, WANG Huajun. Advancements in the application and mechanism of fine-grained mineral flotation collectors[J]. Chinese Journal of Engineering, 2023, 45(11): 1807-1819. doi: 10.13374/j.issn2095-9389.2022.09.23.003
Citation: CHANG Ziyong, LI Yujiao, SHEN Zhengchang, ZOU Laichang, WANG Qiankun, SUN Zhongmei, WANG Huajun. Advancements in the application and mechanism of fine-grained mineral flotation collectors[J]. Chinese Journal of Engineering, 2023, 45(11): 1807-1819. doi: 10.13374/j.issn2095-9389.2022.09.23.003

微細粒礦物浮選捕收劑的應用及其機理研究進展

doi: 10.13374/j.issn2095-9389.2022.09.23.003
基金項目: 國家自然科學基金資助項目(52004020);礦物加工科學與技術國家重點實驗室開放基金資助項目(BGRIMM-KJSKL-2021-13);中央高校基本科研業務費人才專項資助項目(00007733);國家外國專家資助項目(G2022105001L)
詳細信息
    通訊作者:

    Email: changziyong@ustb.edu.cn

  • 中圖分類號: TD91

Advancements in the application and mechanism of fine-grained mineral flotation collectors

More Information
  • 摘要: 詳細闡述了常用微細粒礦物浮選捕收劑的分類以及組合捕收劑的應用,對單一捕收劑和組合捕收劑在礦物表面的作用機理進行了系統的歸納總結. 微細粒礦物浮選捕收劑可大致分為硫化礦捕收劑和氧化礦捕收劑,依據其主要成分可進一步分為陽離子型捕收劑、陰離子型捕收劑、非離子型捕收劑、生物捕收劑和納米粒子捕收劑,作用機理主要包括靜電相互作用、螯合作用、氫鍵作用、化學鍵合以及金屬離子配位調控分子組裝等. 組合捕收劑對微細粒礦物的浮選效果往往優于單一捕收劑,不同捕收劑間的協同作用主要包括共吸附、電荷補償、功能互補以及改變臨界膠束濃度等. 未來應加強基于計算化學和人工智能的新型捕收劑藥劑分子結構設計、納米粒子捕收劑的研發以及新型綠色環保捕收劑的開發與利用.

     

  • 圖  1  納米捕收劑聚合反應式. (a) 苯乙烯和2-巰基苯并噻唑的聚合反應式;(b) 苯乙烯與N-乙烯基咪唑的聚合反應式

    Figure  1.  Polymerization equation for nanocollectors: (a) styrene and 2-Mercaptobenzothiazole; (b) St and N-vinylimidazole

    圖  2  十六烷基羧酸氯代反應過程

    Figure  2.  Chlorination of cetylcarboxylic acid

    圖  3  對苯甲胂酸、鄰苯甲胂酸、芐基胂酸分子結構圖

    Figure  3.  p-Toluene arsonic acid (left); o-Toluene arsonic acid (middle); Benzyl arsonic acid (right)

    圖  4  酰化法合成N-酰基苯胲的反應方程式

    Figure  4.  Hydroxylation reaction of hydroxylamine N-acylbenzene hydroxylamine

    圖  5  羥肟酸分子與金屬離子發生螯合反應

    Figure  5.  Chelation of hydroxamic acid molecules with metal ions

    圖  6  羥肟酸與礦物表面形成螯合物. (a) “O,N”四元螯合; (b) “O,O”五元螯合

    Figure  6.  Hydroxamic acid chelates with mineral surfaces: (a) “O, N” undergoes quaternary chelation and (b) “O, O”undergoes five-membered chelation

    圖  7  Pb–BHA金屬有機配合物捕收劑的活性成分

    Figure  7.  Active constituents of the PB–BHA metal organic complex collectors

    圖  8  苯甲羥肟酸體系鉛離子的活化作用模型[82]

    Figure  8.  Activation model of lead ions in the benzohydroxamic acid system[82]

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation. Miner Eng, 2010, 23(5): 420 doi: 10.1016/j.mineng.2009.12.006
    [2] Du F M, Wang J W, Qi X N. Research Progress on separation technology of fine minerals. World Nonferrous Met, 2021(11): 178

    杜鳳梅, 王金瑋, 齊曉娜. 微細粒礦物分選技術研究進展. 世界有色金屬, 2021(11):178
    [3] Yao Wei, Li Maolin, Cui Rui, et al. Beneficiation technology for microfine disseminated minerals. Modern Mining, 2015, 3101: 66

    姚偉, 李茂林, 崔瑞, 等. 微細粒礦物的分選技術. 現代礦業. 2015, 3101:66
    [4] Zeng L, Yao Z Z. Recycle useful components in tailings by fine particle flotation. World Nonferrous Met, 2019(5): 51

    曾理, 姚占珍. 微細粒浮選回收尾礦中有用組分. 世界有色金屬. 2019(5):51
    [5] Manouchehri H R. Magnetic conditioning of sulfide minerals to improve recovery of fines in flotation—a plant practice. Miner Metall Process, 2018, 35(1): 46
    [6] Zhao Y L, Zhang H, Yu J F, et al. Application research status of nano-bubbles in micro-fine mineral flotation. Water Purif Technol, 2021, 40(2): 127

    趙玉龍, 張鶴, 余俊甫, 等. 納米氣泡在微細粒礦物浮選中的應用研究現狀. 凈水技術, 2021, 40(2):127
    [7] Farrokhpay S, Filippov L, Fornasiero D. Flotation of fine particles: A review. Miner Process Extr Metall Rev, 2021, 42(7): 473 doi: 10.1080/08827508.2020.1793140
    [8] Xu L H, Tian J, Wu H Q, et al. A review on the synergetic effect of the mixed collectors on mineral surface and its application in flotation. Conserv Util Miner Resour, 2017(2): 107

    徐龍華, 田佳, 巫侯琴, 等. 組合捕收劑在礦物表面的協同效應及其浮選應用綜述. 礦產保護與利用, 2017(2):107
    [9] Wang J J, Wei Z, Han H S, et al. Design and assembly of flotation reagents of tungsten minerals. Met Mine, 2021(6): 26

    王建軍, 衛召, 韓海生, 等. 鎢礦浮選藥劑設計與組裝. 金屬礦山, 2021(6):26
    [10] Xue C, Wei Z C. Test study on lead-zinc separation of a low grade lead-zinc ore in Yunnan. Min Metall, 2017, 26(3): 13

    薛晨, 魏志聰. 云南某低品位鉛鋅礦鉛鋅分離試驗研究. 礦冶, 2017, 26(3):13
    [11] Wang L. Study on Flotation Effect and Mechanism of Emulsion Particle Collector on Chalcopyrite and Serpentine [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2020

    王瀾. 乳液顆粒捕收劑對黃銅礦和蛇紋石的浮選作用及機理研究[學位論文]. 贛州:江西理工大學, 2020
    [12] Zhong H, Zhang X Y, Ma X, et al. Study on the preparation of amido xanthate and its flotation performance for chalcopyrite and pyrite. Conserv Util Miner Resour, 2021, 41(2): 13

    鐘宏, 張湘予, 馬鑫, 等. 酰氨基黃藥的制備及其對黃銅礦、黃鐵礦的浮選性能研究. 礦產保護與利用, 2021, 41(2):13
    [13] Chanturia V A, Matveeva T N, Ivanova T A, et al. Mechanism of interaction of cloud point polymers with platinum and gold in flotation of finely disseminated precious metal ores. Miner Process Extr Metall Rev, 2016, 37(3): 187 doi: 10.1080/08827508.2016.1168416
    [14] Huang X P, Jia Y, Cao Z F, et al. Investigation of the interfacial adsorption mechanisms of 2-hydroxyethyl dibutyldithiocarbamate surfactant on galena and sphalerite. Colloids Surf A Physicochem Eng Asp. 2019, 583C
    [15] Bu X Z, Yang L, Shi J J. Application of a new copper collector in the flotation separation of copper-zinc sulfate ore. Min Res Dev, 2017, 37(8): 25

    卜顯忠, 楊璐, 史娟娟. 新型選銅捕收劑在銅鋅硫化礦浮選中的應用. 礦業研究與開發, 2017, 37(8):25
    [16] Zhu H S. Production practice of Z-200 collector in Duobaoshan copper concentrator. Nonferrous Met (Miner Process Sect), 2018(4): 82

    朱厚生. Z-200捕收劑在多寶山銅業選礦廠生產應用實踐. 有色金屬(選礦部分), 2018(4):82
    [17] Zhu H M, Bao Q Y, Luo Z T, et al. Adsorption kinetics and thermodynamics of O-isopropyl-N,N-diethyl thionocarbamate on chalcopyrite surfaces. Conserv Util Miner Resour, 2021, 41(2): 23

    朱慧敏, 包麒鈺, 羅紫亭, 等. 黃銅礦吸附O-異丙基-N,N-二乙基硫氨酯的動力學和熱力學研究. 礦產保護與利用, 2021, 41(2):23
    [18] Lin Q Q, Wu Q M, Dai Z F, et al. Mechanism for hydrocarbon oil collectors in flotation of fine molybdenite ore. Min Metall Eng, 2021, 41(3): 37

    林清泉, 吳啟明, 戴智飛, 等. 微細粒輝鉬礦浮選機理研究. 礦冶工程, 2021, 41(3):37
    [19] Wang L, Ai G H, Yang B, et al. Development of nano flotation technology. Multipurp Util Miner Resour, 2020(1): 29

    王瀾, 艾光華, 楊冰, 等. 納米技術浮選技術研究進展. 礦產綜合利用, 2020(1):29
    [20] Yang B. Experimental and Mechanism Study on Nanoparticle Reinforced Recovery of Fine-Grained Chalcopyrite and Pyrite in the Presence of Serpentine [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2019

    楊冰. 蛇紋石存在下納米顆粒強化回收微細粒黃銅礦與黃鐵礦試驗及機理研究[學位論文]. 贛州:江西理工大學, 2019
    [21] Ding J. Study on the Performance of Ionic Nano-Collectors and Its Mechanism of Reaction with Micro Fine Chalcopyrite [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2018

    丁軍. 離子型納米捕收劑性能及其與微細粒黃銅礦作用機理研究[學位論文]. 贛州:江西理工大學, 2018
    [22] Kang Q. The Synthesis of Nanoparticle Collector with Emulsion Polymerization and Its Characterization [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2016

    康倩. 乳液聚合制備納米粒子捕收劑及其表征[學位論文]. 贛州:江西理工大學, 2016
    [23] He G C, Ding J, Huang C H, et al. Synthesis of nanoparticle emulsion collector HNP and its application in microfine chalcopyrite flotation. IOP Conf Ser: Mater Sci Eng, 2018, 292: 012029 doi: 10.1088/1757-899X/292/1/012029
    [24] Yang S T, Pelton R, Abarca C, et al. Towards nanoparticle flotation collectors for pentlandite separation. Int J Miner Process, 2013, 123: 137 doi: 10.1016/j.minpro.2013.05.007
    [25] Yang S T, Pelton R, Montgomery M, et al. Nanoparticle flotation collectors III: The role of nanoparticle diameter. ACS Appl Mater Interfaces, 2012, 4(9): 4882 doi: 10.1021/am301215h
    [26] Yang S T, Pelton R, Raegen A, et al. Nanoparticle flotation collectors: Mechanisms behind a new technology. Langmuir, 2011, 27(17): 10438 doi: 10.1021/la2016534
    [27] Yang S T, Razavizadeh B B M, Pelton R, et al. Nanoparticle flotation collectors—The influence of particle softness. ACS Appl Mater Interfaces, 2013, 5(11): 4836 doi: 10.1021/am4008825
    [28] Liu W G, Wang B Y, Dai S J, et al. Current application and development prospect of hydroximic acid in flotation. Non Ferr Min Metall, 2006, 22(4): 25

    劉文剛, 王本英, 代淑娟, 等. 羥肟酸類捕收劑在浮選中的應用現狀及發展前景. 有色礦冶, 2006, 22(4):25
    [29] Xu C L, Chi R, Lü R L, et al. Progress in flotation behavior of octyl hydroxamic acid. J Wuhan Inst Technol, 2019, 41(6): 566

    徐彩麗, 池汝安, 呂仁亮, 等. 辛基羥肟酸浮選行為的研究進展. 武漢工程大學學報, 2019, 41(6):566
    [30] Wu X Q, Zhu J G. Selective flotation of cassiterite with benzohydroxamic acid. Miner Eng, 2006, 19(14): 1410 doi: 10.1016/j.mineng.2006.02.003
    [31] Sreenivas T, Padmanabhan N P H. Surface chemistry and flotation of cassiterite with alkyl hydroxamates. Colloids Surf A, 2002, 205(1-2): 47 doi: 10.1016/S0927-7757(01)01146-3
    [32] Liu M X, Li H, Jiang T, et al. Flotation of coarse and fine pyrochlore using octyl hydroxamic acid and sodium oleate. Miner Eng, 2019, 132: 191 doi: 10.1016/j.mineng.2018.12.014
    [33] Wang W W, Li E D, Wang Q W, et al. Study on process mineralogy and flotation test of the Bayan obo fine-grained rare earth ore. Multipurp Util Miner Resour, 2021(5): 81

    王維維, 李二斗, 王其偉, 等. 白云鄂博微細粒稀土礦工藝礦物學及浮選實驗研究. 礦產綜合利用, 2021(5):81
    [34] Zhang C F, Yu Q Y, Cao Y J, et al. Research progress of ilmenite flotation reagents and their surface modification methods. Chin J Nonferrous Met, 2021, 31(12): 3675

    張超凡, 余青瑤, 曹亦俊, 等. 鈦鐵礦浮選藥劑及其表面改性的研究進展. 中國有色金屬學報, 2021, 31(12):3675
    [35] Tan X, He F Y, Shang Y B, et al. Flotation behavior and adsorption mechanism of (1-hydroxy-2-methyl-2-octenyl) phosphonic acid to cassiterite. Trans Nonferrous Met Soc China, 2016, 26(9): 2469 doi: 10.1016/S1003-6326(16)64368-6
    [36] Zheng Q F, Liu D W, Li J L, et al. A review on mechanism of flotation collector for cassiterite. Chin J Nonferrous Met, 2021, 31(3): 785

    鄭其方, 劉殿文, 李佳磊, 等. 錫石浮選捕收劑機理研究進展. 中國有色金屬學報, 2021, 31(3):785
    [37] Hu W Y, Yu X Y. Research status of ultrafine wolframite flotation. Nonferrous Met Sci Eng, 2013, 4(5): 102

    胡文英, 余新陽. 微細粒黑鎢礦浮選研究現狀. 有色金屬科學與工程, 2013, 4(5):102
    [38] Zhang Y. Introduction of new floatation collectors modified with fatty acid. J Salt Lake Res, 2007, 15(2): 34

    張月. 幾種新型脂肪酸類捕收劑改性藥劑介紹. 鹽湖研究, 2007, 15(2):34
    [39] Zhu Y G. Research on Theory and Technology of Micro-Fine Ilmenite Flotation [Dissertation]. Changsha: Central South University, 2012

    朱陽戈. 微細粒鈦鐵礦浮選理論與技術研究[學位論文]. 長沙:中南大學, 2012
    [40] Zhu G Y, Zhang G F, Feng Q M, et al. Autogenous-carrier flotation of fine ilmenite. Chin J Nonferrous Met, 2009, 1903: 554

    朱陽戈, 張國范, 馮其明, 等. 微細粒鈦鐵礦的自載體浮選. 中國有色金屬學報. 2009, 1903:554
    [41] Li E L, Nie Q Q, Miao M Y, et al. Research on collecting property of fine cassiterite by a new anion collector DMY-1. Met Mine, 2016(5): 61

    李二壘, 聶巧巧, 苗美云, 等. 新型陰離子捕收劑DMY-1對細粒錫石的捕收性能. 金屬礦山, 2016(5):61
    [42] Liu J, Han Y X, Zhu Y M, et al. Research status and prospective on separation technology of fine cassiterite. Met Mine, 2014(10): 76

    劉杰, 韓躍新, 朱一民, 等. 細粒錫石選礦技術研究進展及展望. 金屬礦山, 2014(10):76
    [43] Zhu J G, Sun Q G. Benzyl arsonic acid (α-toluene arsonic acid) as collector in the flotation of cassiterite. Nonferrous Met, 1980(3): 36

    朱建光, 孫巧根. 芐基胂酸對錫石的捕收性能. 有色金屬, 1980(3):36
    [44] Wang Y J, Zhang Z H. Study on flotation collectors for fine rutile. Express Inf Min Ind, 2008, 24(1): 31

    王雅靜, 張宗華. 微細粒金紅石浮選捕收劑的研究. 礦業快報, 2008, 24(1):31
    [45] Zhou H P. Agglomeration Flotation Characteristics of Micro-Fine Spodumene and the Reaction Mechanism on Mineral’s Surface [Dissertation]. Xuzhou: China University of Mining and Technology, 2020

    周賀鵬. 微細粒鋰輝石聚團浮選特性及礦物表面反應機理[學位論文]. 徐州:中國礦業大學, 2020
    [46] Yang F. Application of Quaternary Ammonium Salts as Collector in Flotation of Scheelite and Research of the Reaction Mechanism [Dissertation]. Changsha: Central South University, 2013

    楊帆. 季銨捕收劑在白鎢礦浮選中的應用及其作用機理研究[學位論文]. 長沙:中南大學, 2013
    [47] Deng L Q, Zhao G, Zhong H, et al. Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotation separation. J Ind Eng Chem, 2016, 33: 131 doi: 10.1016/j.jiec.2015.09.027
    [48] Rong Y, Lu Y X, Wang S, et al. Synthesis of the N-acyl phenyl hydroxylamines and their flotation properties on malachite. Conserv Util Miner Resour, 2019, 39(4): 109

    榮洋, 盧宇熙, 王帥, 等. N-酰基苯胲的合成及其對孔雀石浮選性能. 礦產保護與利用, 2019, 39(4):109
    [49] Govender Y, Gericke M. Extracellular polymeric substances (EPS) from bioleaching systems and its application in bioflotation. Miner Eng, 2011, 24(11): 1122 doi: 10.1016/j.mineng.2011.02.016
    [50] Gonzales L G V, Pino G A H, Torem M L. Electroflotation of cassiterite fines using a hydrophobic bacterium strain. Rem: Rev Esc Minas, 2013, 66(4): 507 doi: 10.1590/S0370-44672013000400016
    [51] Lu H Z. Experimental study on suitable collector for zinc concentration in a lead-zinc mine. Min Technol, 2011, 11(2): 94

    呂宏芝. 某鉛鋅礦適宜選鋅捕收劑的試驗研究. 采礦技術. 2011, 11(2): 94
    [52] Zhang H, Wei Z W, Yang M J, et al. Flotation experiment on an arsenic-bearing high sulfur microfine antimony ore from Xinjiang. Mod Min, 2019, 35(8): 93

    張瀚, 魏宗武, 楊梅金, 等. 新疆某含砷高硫微細粒銻礦浮選試驗研究. 現代礦業, 2019, 35(8):93
    [53] Luo L, Li M L, Cheng L. Flotation experimental research on a lead-zinc slime in Guangdong Province. Nonferrous Met (Miner Process Sect), 2016(3): 23

    羅力, 李茂林, 成嵐. 廣東某鉛鋅礦泥浮選試驗研究. 有色金屬(選礦部分), 2016(3):23
    [54] Ai G H, Wu Y L, Zhou Y, et al. Recovery of fine scheelite from flotation system of calcium-containing minerals with combined collectors. Nonferrous Met Eng, 2014, 4(6): 44

    艾光華, 吳燕玲, 周源, 等. 組合捕收劑從含鈣礦物浮選體系中回收微細粒白鎢礦. 有色金屬工程, 2014, 4(6):44
    [55] Zhang L Z, Wang C X, Zhao F C. Mineral processing experiments on fine-disseminated refractory gold ore from Gansu. Min Metall Eng, 2011, 31(4): 45

    張立征, 王彩霞, 趙福財. 甘肅某微細粒浸染型難處理金礦選礦試驗研究. 礦冶工程, 2011, 31(4):45
    [56] Wang J J, Gao Z Y, Gao Y S, et al. Flotation separation of scheelite from calcite using mixed cationic/anionic collectors. Miner Eng, 2016, 98: 261 doi: 10.1016/j.mineng.2016.09.006
    [57] Xu L H, Hu Y H, Tian J A, et al. Synergistic effect of mixed cationic/anionic collectors on flotation and adsorption of muscovite. Colloids Surf A, 2016, 492: 181 doi: 10.1016/j.colsurfa.2015.11.003
    [58] Cai Z B. Application of Cationic Collector in Iron Ore Reverse Flotation to Increase Iron and Reduce Silicon [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2010

    蔡振波. 陽離子捕收劑用于鐵礦石反浮選提鐵降硅的研究[學位論文]. 贛州:江西理工大學, 2010
    [59] Zhu P C. Synthesis of Cationic Collector Polyamines and Its Application of Combinated Collector [Dissertation]. Wuhan: Wuhan University of Technology, 2009

    朱鵬程. 胺系列捕收劑的合成及組合使用研究[學位論文]. 武漢:武漢理工大學, 2009
    [60] Zhang Y J, Zhao P, Guo Z X, et al. Application of polar collectors on refractory molybdenite ore floatation. China Min Mag, 2015, 24(11): 122

    張艷嬌, 趙平, 郭珍旭, 等. 極性捕收劑在難選輝鉬礦浮選中的應用. 中國礦業, 2015, 24(11):122
    [61] Li H, Liu M X, Liu Q. The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector. Miner Eng, 2018, 119: 105 doi: 10.1016/j.mineng.2018.01.004
    [62] Li J Y, Chen H J, Yuan Y, et al. Experimental research on mineral processing for some micro-fine copper ore from Xinjiang. Met Mine, 2012(7): 82

    李吉云, 陳慧杰, 袁艷, 等. 新疆某微細粒銅礦石選礦試驗研究. 金屬礦山, 2012(7):82
    [63] Gao Q, Ge Y Y, Liu S B, et al. Flotation separation of copper-lead-zinc polymetallic bulk concentrate. Min Metall Eng, 2020, 40(3): 72 doi: 10.3969/j.issn.0253-6099.2020.03.019

    高欽, 葛英勇, 劉順兵, 等. 銅鉛鋅多金屬混合精礦浮選分離試驗研究. 礦冶工程, 2020, 40(3):72 doi: 10.3969/j.issn.0253-6099.2020.03.019
    [64] He T S, Li H, Jin J P, et al. Improving fine molybdenite flotation using a combination of aliphatic hydrocarbon oil and polycyclic aromatic hydrocarbon. Results Phys, 2019, 12: 1050 doi: 10.1016/j.rinp.2018.12.010
    [65] Wang L, Sun W, Hu Y H, et al. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite - Quartz flotation system. Miner Eng, 2014, 64: 44 doi: 10.1016/j.mineng.2014.03.021
    [66] Wang L L, Zhu L Y, Liu Y L, et al. Molecular dynamics simulation study on adsorption behavior of mixed collector on lithium mica surface. Nonferrous Met (Miner Process Sect), 2019(2): 108 doi: 10.3969/j.issn.1671-9492.2019.02.022

    王林林, 朱靈燕, 劉躍龍, 等. 混合捕收劑在鋰云母表面吸附行為的分子動力學模擬研究. 有色金屬(選礦部分), 2019(2):108 doi: 10.3969/j.issn.1671-9492.2019.02.022
    [67] Qu X Y, Xiao J J, Liu G Y, et al. Investigation on the flotation behavior and adsorption mechanism of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione to chalcopyrite. Miner Eng, 2016, 89: 10 doi: 10.1016/j.mineng.2015.12.015
    [68] Huang Y G, Liu G Y, Ma L Q, et al. 5-Heptyl-1, 3, 4-oxadiazole-2-thione: Synthesis and flotation mechanism to chalcopyrite. J Ind Eng Chem, 2018, 61: 331 doi: 10.1016/j.jiec.2017.12.031
    [69] Meng Q Y, Feng Q M, Ou L M. Flotation behavior and adsorption mechanism of fine wolframite with octyl hydroxamic acid. J Cent South Univ, 2016, 23(6): 1339 doi: 10.1007/s11771-016-3185-y
    [70] Wei P G, Ren L Y, Zeng W N, et al. Mechanism for selectivity and reaction of hydroxamic acid type collector in fine-grained wolframite flotation. Min Metall Eng, 2020, 40(6): 47 doi: 10.3969/j.issn.0253-6099.2020.06.012

    魏鵬剛, 任瀏祎, 曾維能, 等. 細粒黑鎢礦捕收劑的選擇及作用機理研究. 礦冶工程, 2020, 40(6):47 doi: 10.3969/j.issn.0253-6099.2020.06.012
    [71] Chen P, Sun W, Yue T. Dynamics simulation of tributyltetradecylphosphonium chloride on kaolinite(001)plane. J China Univ Min Technol, 2014, 43(2): 294 doi: 10.13247/j.cnki.jcumt.2014.02.019

    陳攀, 孫偉, 岳彤. 季鹽在高嶺石(001)面上的吸附動力學模擬. 中國礦業大學學報, 2014, 43(2):294 doi: 10.13247/j.cnki.jcumt.2014.02.019
    [72] Xiao J J, Liu G Y, Zhong H. The adsorption mechanism of N-butoxypropyl-S-[2-(hydroxyimino) propyl]dithiocarbamate ester to copper minerals flotation. Int J Miner Process, 2017, 166: 53 doi: 10.1016/j.minpro.2017.07.003
    [73] Li F X, Zhong H, Zhao G, et al. Adsorption of α-hydroxyoctyl phosphonic acid to ilmenite/water interface and its application in flotation. Colloids Surf A, 2016, 490: 67 doi: 10.1016/j.colsurfa.2015.11.015
    [74] Gong G C, Han Y X, Liu J, et al. Quantum chemical study of the adsorption of NaOL on cassiterite(211) surface. J Northeast Univ (Nat Sci), 2018, 39(5): 684

    宮貴臣, 韓躍新, 劉杰, 等. 油酸鈉在錫石(211)表面吸附的量子化學研究. 東北大學學報(自然科學版), 2018, 39(5):684
    [75] Li F X, Zhong H, Zhao G, et al. Flotation performances and adsorption mechanism of α-hydroxyoctyl phosphinic acid to cassiterite. Appl Surf Sci, 2015, 353: 856 doi: 10.1016/j.apsusc.2015.06.147
    [76] Sun W J, Han H S, Hu Y H, et al. Flotation theory and research progress of metal ion coordination regulation molecule assembly. Chin J Nonferrous Met, 2020, 30(4): 927

    孫文娟, 韓海生, 胡岳華, 等. 金屬離子配位調控分子組裝浮選理論及其研究進展. 中國有色金屬學報, 2020, 30(4):927
    [77] Zheng Y, Cui Y T, Wang W Q. Activation mechanism of lead ions in perovskite flotation with octyl hydroxamic acid collector. Minerals, 2018, 8(8): 341 doi: 10.3390/min8080341
    [78] Fang S, Xu L H, Wu H Q, et al. Comparative studies of flotation and adsorption of Pb(II)/benzohydroxamic acid collector complexes on ilmenite and titanaugite. Powder Technol, 2019, 345: 35 doi: 10.1016/j.powtec.2018.12.089
    [79] Fang S, Xu L H, Wu H Q, et al. Adsorption of Pb(II)/benzohydroxamic acid collector complexes for ilmenite flotation. Miner Eng, 2018, 126: 16 doi: 10.1016/j.mineng.2018.06.022
    [80] Tian M J, Gao Z Y, Khoso S A, et al. Understanding the activation mechanism of Pb2+ ion in benzohydroxamic acid flotation of spodumene: Experimental findings and DFT simulations. Miner Eng, 2019, 143: 106006 doi: 10.1016/j.mineng.2019.106006
    [81] Tian M, Zhang C, Han H, et al. Effects of the preassembly of benzohydroxamic acid with Fe (III) ions on its adsorption on cassiterite surface. Mine Eng, 2018, 127: 32 doi: 10.1016/j.mineng.2018.07.019
    [82] Sun W, Wang R L, Hu Y H, et al. Activation and new theory of lead ion in minerals flotation process. Nonferrous Met (Miner Process Sect), 2018(2): 91

    孫偉, 王若林, 胡岳華, 等. 礦物浮選過程中鉛離子的活化作用及新理論. 有色金屬(選礦部分), 2018(2):91
    [83] Shen L, Zhu J B, Liu L Y, et al. Flotation of fine kaolinite using dodecylamine chloride/fatty acids mixture as collector. Powder Technol, 2017, 312: 159 doi: 10.1016/j.powtec.2017.02.032
    [84] Qin W Q, Ren L Y, Xu Y B, et al. Adsorption mechanism of mixed salicylhydroxamic acid and tributyl phosphate collectors in fine cassiterite electro-flotation system. J Cent South Univ Technol, 2012, 19(6): 1711 doi: 10.1007/s11771-012-1197-9
    [85] Wang L, Hu Y H, Sun W, et al. Molecular dynamics simulation study of the interaction of mixed cationic/anionic surfactants with muscovite. Appl Surf Sci, 2015, 327: 364 doi: 10.1016/j.apsusc.2014.11.160
    [86] Lu Y P, Tan Y K, Feng Q M, et al. Effect of 8-hydroxyquinoline on flotation separation of ultrafine aluminum-silicate minerals. Chin J Nonferrous Met, 2007, 17(8): 1353

    盧毅屏, 譚燕葵, 馮其明, 等. 8-羥基喹啉在微細粒鋁硅礦物浮選分離中的作用. 中國有色金屬學報, 2007, 17(8):1353
    [87] Zhang X F, Sun W. Flotation behaviour and mechanism of hemimorphite in presence of mixed(cationic/anionic) collectors. Chin J Nonferrous Met, 2014, 24(2): 499 doi: 10.1016/S1003-6326(14)63088-0

    張祥峰, 孫偉. 陰陽離子混合捕收劑對異極礦的浮選作用及機理. 中國有色金屬學報, 2014, 24(2):499 doi: 10.1016/S1003-6326(14)63088-0
  • 加載中
圖(8)
計量
  • 文章訪問數:  315
  • HTML全文瀏覽量:  108
  • PDF下載量:  25
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-09-23
  • 網絡出版日期:  2023-07-20
  • 刊出日期:  2023-11-01

目錄

    /

    返回文章
    返回