<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

“雙碳”目標下鋼鐵企業低碳發展的技術路徑

王新東 上官方欽 邢奕 侯長江 田京雷

王新東, 上官方欽, 邢奕, 侯長江, 田京雷. “雙碳”目標下鋼鐵企業低碳發展的技術路徑[J]. 工程科學學報, 2023, 45(5): 853-862. doi: 10.13374/j.issn2095-9389.2022.09.22.003
引用本文: 王新東, 上官方欽, 邢奕, 侯長江, 田京雷. “雙碳”目標下鋼鐵企業低碳發展的技術路徑[J]. 工程科學學報, 2023, 45(5): 853-862. doi: 10.13374/j.issn2095-9389.2022.09.22.003
WANG Xin-dong, SHANGGUAN Fang-qin, XING Yi, HOU Chang-jiang, TIAN Jing-lei. Research on the low-carbon development technology route of iron and steel enterprises under the “double carbon” target[J]. Chinese Journal of Engineering, 2023, 45(5): 853-862. doi: 10.13374/j.issn2095-9389.2022.09.22.003
Citation: WANG Xin-dong, SHANGGUAN Fang-qin, XING Yi, HOU Chang-jiang, TIAN Jing-lei. Research on the low-carbon development technology route of iron and steel enterprises under the “double carbon” target[J]. Chinese Journal of Engineering, 2023, 45(5): 853-862. doi: 10.13374/j.issn2095-9389.2022.09.22.003

“雙碳”目標下鋼鐵企業低碳發展的技術路徑

doi: 10.13374/j.issn2095-9389.2022.09.22.003
基金項目: 河北省重點研發計劃資助項目(22373701D)
詳細信息
    通訊作者:

    E-mail:tianjinglei@hbisco.com

  • 中圖分類號: X5

Research on the low-carbon development technology route of iron and steel enterprises under the “double carbon” target

More Information
  • 摘要: 為落實國家“碳達峰、碳中和”發展目標,解決鋼鐵行業低碳發展過程中面臨的瓶頸和難題,展開了一系列政策、技術和行動方案的研究。對比國內外鋼鐵企業碳排放強度的現狀及變化趨勢,分析了引起碳排放強度差異性的原因,并給出我國鋼鐵工業“碳達峰、碳中和”發展的總體方向。解析了中國鋼鐵工業及國內大型鋼鐵企業的“碳達峰、碳中和”目標及實施方案,并重點基于某大型鋼鐵企業當前生產、裝備、工藝流程、碳排放實際情況,在充分考慮了未來產能裝備、工藝變革、技術創新、能源轉型等方面規劃的基礎之上,制定了具體的低碳發展技術路線圖,為我國鋼鐵企業落實國家“碳達峰、碳中和”目標提供了示范和引領。路線圖指出,該企業低碳發展將經歷“碳達峰平臺期、穩步下降期及深度脫碳期”三個階段,通過實施鐵素資源優化、流程優化重構、系統能效提升、用能結構優化、低碳技術變革、產業耦合降碳六大技術路徑,建設碳排放數據管理體系及鋼鐵產品全生命周期(LCA)碳足跡兩大平臺,實現2025年碳排放總量較峰值降低10%,2030年碳排放總量較峰值降低30%,最終在2050年實現碳中和,并詳細闡明了該企業對各技術路徑的規劃目標,測算了各減碳技術路徑實施后帶來的碳減排量期望值,比較了不同技術路徑在不同發展階段所帶來的減碳效果。最后,結合該企業低碳發展技術路線圖的制定和實施過程,提出我國鋼鐵企業低碳發展的建議。

     

  • 圖  1  全球鋼鐵企業粗鋼產量、噸鋼碳排放及噸鋼能耗情況[5]

    Figure  1.  Crude steel output, carbon emission, and energy consumption per ton of steel in global steel enterprises

    圖  2  1991—2019年中國鋼鐵行業粗鋼產量和CO2排放總量、噸鋼CO2排放量的變化

    Figure  2.  Changes in crude steel output, total CO2 emissions, and CO2 emissions per ton of steel in the Chinese iron and steel industry from 1991 to 2019

    圖  3  河鋼集團2017—2021年噸鋼CO2排放強度

    Figure  3.  CO2 emission intensity per ton of steel of the HBIS Group from 2017 to 2021

    圖  4  2017—2050年河鋼集團低碳發展目標

    Figure  4.  Low-carbon development goals of the HBIS Group from 2017 to 2050

    圖  5  2022—2050年河鋼集團鐵素資源優化帶來的減排量

    Figure  5.  Emission reduction owing to iron resource optimization of the HBIS Group from 2022 to 2050

    圖  6  2022—2050年河鋼集團流程優化重構帶來的減排量

    Figure  6.  Emission reduction owing to process optimization and reconstruction of the HBIS Group from 2022 to 2050

    圖  7  2022—2050年河鋼集團系統能效提升帶來的減排量的變化

    Figure  7.  Change of emission reduction owing to system energy efficiency improvement of the HBIS Group from 2022 to 2050

    圖  8  2022—2050年河鋼集團用能結構優化帶來的減排量

    Figure  8.  Emission reduction owing to optimization of the energy consumption structure of the HBIS Group from 2022 to 2050

    圖  9  2022—2050年河鋼集團低碳技術變革帶來的減排量

    Figure  9.  Emission reduction owing to low-carbon technology reform of the HBIS Group from 2022 to 2050

    圖  10  2022—2050年河鋼集團產業耦合降碳帶來的減排量

    Figure  10.  Emission reduction owing to industrial coupling and carbon reduction of the HBIS Group from 2022 to 2050

    圖  11  河鋼集團低碳發展技術路線圖

    Figure  11.  Low-carbon development technology roadmap of the HBIS Group

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] World Steel Association. Climate change and the production of iron and steel [R/OL]. Website Online (2021-05-17) [2022-09-22]. https://worldsteel.org/publications/policy-papers/climate-change-and-the-production-of-iron-and-steel/
    [2] ArcelorMittal. Climate Action Reports (2019) [R/OL]. Website Online (2019-05-20) [2022-09-22]. https://corporate.arcelormittal.com/sustainability/climate-action-reports
    [3] Nippon Steel Corporation. Nippon Steel Sustainability Report 2020 [R/OL]. Website Online (2020-10-09) [2022-09-22]. https://www.nipponsteel.com/common/secure/en/csr/report/nsc/pdf/report2020.pdf
    [4] POSCO. POSCO’s dialogue for climate action—Building a better future together with sustainable steel [R/OL]. Website Online (2020-12-11) [2022-09-22]. http://corporatecitizenship.posco.com/citizen/resources/file/report/eng/2020_POSCO_CLIMATE_ACTION_REPORT.pdf
    [5] Cui Z F, Xu A J, Shangguan F Q. Low-carbon development strategy analysis of the domestic and foreign steel industry. Chin J Eng, 2022, 44(9): 1496

    崔志峰, 徐安軍, 上官方欽. 國內外鋼鐵行業低碳發展策略分析. 工程科學學報, 2022, 44(9):1496
    [6] Shangguan F Q, Li X P, Zhou J C, et al. Strategic research on development of steels crap resources in China. Iron Steel, 2020, 55(6): 8 doi: 10.13228/j.boyuan.issn0449-749x.20190427

    上官方欽, 酈秀萍, 周繼程, 等. 中國廢鋼資源發展戰略研究. 鋼鐵, 2020, 55(6):8 doi: 10.13228/j.boyuan.issn0449-749x.20190427
    [7] Shangguan F Q, Yin R Y, Li Y, et al. Dissussion on strategic significance of developing full scrap EAF process in China. Iron Steel, 2021, 56(8): 86 doi: 10.13228/j.boyuan.issn0449-749x.20200401

    上官方欽, 殷瑞鈺, 李煜等. 論中國發展全廢鋼電爐流程的戰略意義. 鋼鐵, 2021, 56(8):86 doi: 10.13228/j.boyuan.issn0449-749x.20200401
    [8] Yao T L, Wu W, Yang Y, et al. Analysis on low-carbon development of China's steel industry under “dual-carbon” goal. J Iron Steel Res, 2022, 34(6): 505 doi: 10.13228/j.boyuan.issn1001-0963.20210399

    姚同路, 吳偉, 楊勇, 等. “雙碳”目標下中國鋼鐵工業的低碳發展分析. 鋼鐵研究學報, 2022, 34(6):505 doi: 10.13228/j.boyuan.issn1001-0963.20210399
    [9] Shangguan F Q, Liu Z D, Yin R Y. Study on implementation path of “carbon peak” and “carbon neutrality” in steel industry in China. China Metall, 2021, 31(9): 15 doi: 10.13228/j.boyuan.issn1006-9356.20210393

    上官方欽, 劉正東, 殷瑞鈺. 鋼鐵行業“碳達峰”“碳中和”實施路徑研究. 中國冶金, 2021, 31(9):15 doi: 10.13228/j.boyuan.issn1006-9356.20210393
    [10] Xing Y, Cui Y K, Tian J L, et al. Application status and prospect of low carbon technology in iron and steel industry. Chin J Eng, 2022, 44(4): 801 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204030

    邢奕, 崔永康, 田京雷, 等. 鋼鐵行業低碳技術應用現狀與展望. 工程科學學報, 2022, 44(4):801 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204030
    [11] Wang X D, Hu Q C, Zhang X D. Developing the full potential of preironmaking system to catch up with the advanced level of the industry. Hebei Metall, 2022(7): 1

    王新東, 胡啟晨, 張曉冬. 發揮鐵前系統潛力 趕超行業先進水平. 河北冶金, 2022(7):1
    [12] Wang X D, Tian J L, Song C Y. Innovative practice technology and outlook in large iron and steel enterprise green manufacturing. Iron Steel, 2018, 53(2): 1 doi: 10.13228/j.boyuan.issn0449-749x.20170533

    王新東, 田京雷, 宋程遠. 大型鋼鐵企業綠色制造創新實踐與展望. 鋼鐵, 2018, 53(2):1 doi: 10.13228/j.boyuan.issn0449-749x.20170533
    [13] Wang X D, Li J X, Hu Q C. Application practice of source and process sulfur-nitrate reduction technology based on optimization of blast furnace charge structure. Iron Steel, 2019, 54(12): 104 doi: 10.13228/j.boyuan.issn0449-749x.20190287

    王新東, 李建新, 胡啟晨. 基于高爐爐料結構優化的源頭減排技術及應用. 鋼鐵, 2019, 54(12):104 doi: 10.13228/j.boyuan.issn0449-749x.20190287
    [14] Wang X D, Jin Y L. Strategy analysis and testing study of high ratio of pellet utilized in blast furnace. Iron Steel, 2021, 56(5): 7 doi: 10.13228/j.boyuan.issn0449-749x.20210081

    王新東, 金永龍. 高爐使用高比例球團的戰略思考與球團生產的試驗研究. 鋼鐵, 2021, 56(5):7 doi: 10.13228/j.boyuan.issn0449-749x.20210081
    [15] Zhou J C, Shangguan F Q, Ding Y, et al. Discuss on interface technology and energy loss of main Interface in steel manufacturing process. Iron Steel, 2020, 55(12): 99 doi: 10.13228/j.boyuan.issn0449-749x.20200091

    周繼程, 上官方欽, 丁毅, 等. 鋼鐵制造流程“界面”技術與界面能量損失分析. 鋼鐵, 2020, 55(12):99 doi: 10.13228/j.boyuan.issn0449-749x.20200091
    [16] Yang J P, Zhang J S, Liu Q. Research progress on three kinds of classic process interface technologies in steelmaking?continuous casting section. Chin J Eng, 2020, 42(12): 1542

    楊建平, 張江山, 劉青. 煉鋼?連鑄區段3種典型工序界面技術研究進展. 工程科學學報, 2020, 42(12):1542
    [17] He K, Wang L. Development and status of production energy consumption of China’s iron and steel industry. China Metall, 2021, 31(9): 26 doi: 10.13228/j.boyuan.issn1006-9356.20210303

    何坤, 王立. 中國鋼鐵工業生產能耗的發展與現狀. 中國冶金, 2021, 31(9):26 doi: 10.13228/j.boyuan.issn1006-9356.20210303
    [18] Zhang Q, Cai J J. Systemic energy saving and energy efficiency improving of iron and steel making process. Iron Steel, 2021, 56(8): 32 doi: 10.13228/j.boyuan.issn0449-749x.20210222

    張琦, 蔡九菊. 鋼鐵制造流程系統節能與能效提升. 鋼鐵, 2021, 56(8):32 doi: 10.13228/j.boyuan.issn0449-749x.20210222
    [19] Xue Y L, Zhang J, Liu Y, et al. Roadmap of coal control and carbon reduction in the steel industry under the carbon peak and neutralization target. Environ Sci, 2022, 43(10): 4392 doi: 10.13227/j.hjkx.202201081

    薛英嵐, 張靜, 劉宇, 等. “雙碳”目標下鋼鐵行業控煤降碳路線圖. 環境科學, 2022, 43(10):4392 doi: 10.13227/j.hjkx.202201081
    [20] Lu J, Fan J. Improve the comprehensive utilization level of metallurgical slag and promote cross industry collaborative carbon reduction [N]. China Enterprise New (2022-03-08) [2022-09-22]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CCND&dbname=CCNDLAST2022&filename=CQYB202203080040&uniplatform=NZKPT&v=DF8C08wGV6naTjKjMf7YIzLsu4jYC1DdTlb-TWH_qdqBBI-taGN7CLUISW8gT3TRh2LrOqS8m3Q%3d

    鹿娟, 范捷. 提升冶金渣綜合利用水平, 促進跨行業協同減碳[N]. 中國企業報 (2022-03-08) [2022-09-22]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CCND&dbname=CCNDLAST2022&filename=CQYB202203080040&uniplatform=NZKPT&v=DF8C08wGV6naTjKjMf7YIzLsu4jYC1DdTlb-TWH_qdqBBI-taGN7CLUISW8gT3TRh2LrOqS8m3Q%3d
    [21] Wang X D, Zhang C, Sun Y J, et al. Application practice of green manufacturing technology in tangsteel new district of HBIS group. Environ Eng, 2022, 40(7): 179 doi: 10.13205/j.hjgc.202207026

    王新東, 張弛, 孫宇佳, 等. 河鋼唐鋼新區綠色制造技術應用實踐. 環境工程, 2022, 40(7):179 doi: 10.13205/j.hjgc.202207026
    [22] Wang X D. Paths and measures of technology upgrading in the new development stage of HBIS. Hebei Metall, 2022(1): 1 doi: 10.13630/j.cnki.13-1172.2022.0101

    王新東. 河鋼新發展階段技術升級的路徑與措施. 河北冶金, 2022(1):1 doi: 10.13630/j.cnki.13-1172.2022.0101
    [23] Li X C, Li B. Low carbon transition path of China’s iron and steel industry under global temperature-control target. Iron Steel, 2019, 54(8): 224 doi: 10.13228/j.boyuan.issn0449-749x.20190178

    李新創, 李冰. 全球溫控目標下中國鋼鐵工業低碳轉型路徑. 鋼鐵, 2019, 54(8):224 doi: 10.13228/j.boyuan.issn0449-749x.20190178
    [24] Wang X Y, Li B, Lu C, et al. China’s iron and steel industry carbon emissions peak pathways. Res Environ Sci, 2022, 35(2): 339 doi: 10.13198/j.issn.1001-6929.2021.11.11

    汪旭穎, 李冰, 呂晨, 等. 中國鋼鐵行業二氧化碳排放達峰路徑研究. 環境科學研究, 2022, 35(2):339 doi: 10.13198/j.issn.1001-6929.2021.11.11
    [25] Shao Y J, Xu L, Liu X P. Discussion on solution of “carbon neutrality” in China’s steel production. China Metall, 2022, 32(4): 1 doi: 10.13228/j.boyuan.issn1006-9356.20210664

    邵遠敬, 徐蕾, 劉校平, 等. 中國鋼鐵生產“碳中和”解決方案探討. 中國冶金, 2022, 32(4):1 doi: 10.13228/j.boyuan.issn1006-9356.20210664
    [26] Cheng M L. Analysis and prospect of carbon dioxide emission reduction path of iron and steel enterprises. Metall Econ Manage, 2022(4): 18

    程茉莉. 鋼鐵企業二氧化碳減排路徑分析及展望. 冶金經濟與管理, 2022(4):18
  • 加載中
圖(11)
計量
  • 文章訪問數:  940
  • HTML全文瀏覽量:  290
  • PDF下載量:  168
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-09-22
  • 網絡出版日期:  2022-10-17
  • 刊出日期:  2023-05-01

目錄

    /

    返回文章
    返回