<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電解水制氫技術及大電流析氧反應研究與展望

張唯怡 張議潔 王進偉 趙強 劉光 李晉平

張唯怡, 張議潔, 王進偉, 趙強, 劉光, 李晉平. 電解水制氫技術及大電流析氧反應研究與展望[J]. 工程科學學報, 2023, 45(7): 1057-1070. doi: 10.13374/j.issn2095-9389.2022.09.20.005
引用本文: 張唯怡, 張議潔, 王進偉, 趙強, 劉光, 李晉平. 電解水制氫技術及大電流析氧反應研究與展望[J]. 工程科學學報, 2023, 45(7): 1057-1070. doi: 10.13374/j.issn2095-9389.2022.09.20.005
ZHANG Wei-yi, ZHANG Yi-jie, WANG Jin-wei, ZHAO Qiang, LIU Guang, LI Jin-ping. Research and perspectives on electrocatalytic water splitting and large current density oxygen evolution reaction[J]. Chinese Journal of Engineering, 2023, 45(7): 1057-1070. doi: 10.13374/j.issn2095-9389.2022.09.20.005
Citation: ZHANG Wei-yi, ZHANG Yi-jie, WANG Jin-wei, ZHAO Qiang, LIU Guang, LI Jin-ping. Research and perspectives on electrocatalytic water splitting and large current density oxygen evolution reaction[J]. Chinese Journal of Engineering, 2023, 45(7): 1057-1070. doi: 10.13374/j.issn2095-9389.2022.09.20.005

電解水制氫技術及大電流析氧反應研究與展望

doi: 10.13374/j.issn2095-9389.2022.09.20.005
基金項目: 國家自然科學基金面上項目(22075196, 21878204);國家自然科學基金區域創新發展聯合基金項目(U22A20418)
詳細信息
    通訊作者:

    劉光,E-mail: liuguang@tyut.edu.cn

    李晉平,E-mail: jpli211@hotmail.com

  • 中圖分類號: TQ116.2+1

Research and perspectives on electrocatalytic water splitting and large current density oxygen evolution reaction

More Information
  • 摘要: 當今時代對可持續能源的迫切需求推動了可再生能源技術的不斷改進,其中氫能因其清潔環保且能量密度高而受到了科研人員廣泛關注。電解水制氫作為一種綠色環保的制氫方式,其陽極析氧反應(OER)的高能耗限制了電解水制氫技術的廣泛應用。近年來,高性能的OER催化劑的研究得到了長足發展,但催化劑的測試范圍小,且很少能夠連續工作數百小時,遠遠不能滿足實際應用的需求。為了更好的適用于工業應用,OER催化劑需要滿足更苛刻的測試環境,如在低過電位下提供大電流密度、在強氣體排放過程中維持穩定性和耐久性,因此開發在大電流密度下的高活性OER催化劑是當前工作的重中之重。結合大電流OER催化劑的研究進展,本文首先提出氫能是目前最有前途的能源之一,并調研了大電流密度下電催化劑的研究現狀。其次通過對OER機理進行分析,發現采取元素摻雜、界面工程、缺陷工程和形貌工程等措施可以提升催化劑在大電流密度下的活性。最后,對大電流析氧領域在工業發展中現階段存在的挑戰及未來發展方向進行了展望。

     

  • 圖  1  HER反應機理示意圖. (a) 酸性電解質; (b) 堿性電解質

    Figure  1.  Schematic of the HER reaction mechanism: (a) acid electrolyte; (b) alkaline electrolyte

    圖  2  析氧反應機理示意圖. (a) 酸性環境; (b) 堿性環境

    Figure  2.  Diagram of the OER mechanism: (a) acidic environment; (b) alkaline environment

    圖  3  (a) 鈷摻雜NiO–Fe3O4@NiCo2O4 HNAs的制備示意圖; (b) 1 mol·L–1 KOH溶液中鈷摻雜NiO–Fe3O4@NiCo2O4 HNAs、NiO–Fe3O4、NiCo2O4、IrO2和NF的OER線性掃描伏安(LSV)曲線; (c) 鈷摻雜NiO–Fe3O4@NiCo2O4 HNAs在質量分數為30%的KOH溶液中過電位為270 mV時的計時電流曲線

    Figure  3.  (a) Synthetic schematic of Co-doped NiO–Fe3O4@NiCo2O4 HNAs; (b) OER linear sweep voltammetry (LSV) curves of the Co-doped NiO–Fe3O4@NiCo2O4 HNAs, NiO–Fe3O4, NiCo2O4, IrO2, and NF in 1 mol·L–1 KOH solution; (c) chronoamperometry curves of the Co-doped NiO–Fe3O4@NiCo2O4 HNAs in 30% (mass fraction) KOH at an overpotential of 270 mV

    圖  4  (a) CF/VMFP的合成過程示意圖; (b) 1 mol·L–1 KOH溶液中CF/VMFP和對比樣的LSV曲線; (c) CF/VMFP在1 mol·L–1 KOH溶液中電流密度為250 mA·cm–2時的計時電位曲線

    Figure  4.  (a) Schematic for the synthesis process of CF/VMFP; (b) OER LSV curves of the CF/VMFP and othercatalysts in 1 mol·L–1 KOH; (c) chronometric potential curve of CF/VMFP in 1 mol·L–1 KOH at a current density of 250 mA·cm–2

    圖  5  (a) Co9S8@Fe3O4的合成示意圖; (b) 1 mol·L–1 KOH溶液中Co9S8@Fe3O4的OER過程中LSV曲線,插圖為不同催化劑在250和500 mA·cm–2處的過電位; (c) Co9S8@Fe3O4和Co9S8在1 mol·L–1 KOH中電流密度為500 mA·cm–2時的計時電位曲線

    Figure  5.  (a) Synthetic schematic of the Co9S8@Fe3O4; (b) LSV curves of Co9S8@Fe3O4 for OER in 1 mol·L–1 KOH. The inset shows overpotentials at 250 and 500 mA·cm–2 for the corresponding catalysts; (c) chronometric potential curves of Co9S8@Fe3O4 and Co9S8 in 1 mol·L–1 KOH at a current density of 500 mA·cm–2

    圖  6  (a) Fe–Ni3S2電催化劑合成示意圖; (b) NiOOH的析氧反應的吉布斯自由能圖; (c) Ni1–xFexOOH的析氧反應的吉布斯自由能圖

    Figure  6.  (a) Scheme for synthesis of Fe–Ni3S2 electrocatalyst; (b) Gibbs free-energy diagrams of OER for NiOOH; (c) Gibbs free-energy diagrams of OER for Ni1–xFexOOH

    圖  7  (a) Co1–xS/Co(OH)F/CC形貌示意圖; (b) Co1–xS/Co(OH)F/CC的掃描電鏡圖; (c) S取代F原子形成Co(OH)F-S樣品的示意圖; (d) 1 mol·L–1 KOH溶液中Co1–xS/Co(OH)F/CC和對比樣的OER LSV曲線

    Figure  7.  (a) Schematic of the morphology of Co1–xS/Co(OH)F/CC; (b) SEM images of Co1–xS/Co(OH)F/CC; (c) schematic of S replacing F atoms to form a Co(OH)F-S sample; (d) OER LSV curves of the Co1–xS/Co(OH)F/CC and contrast catalysts in 1 mol·L–1 KOH

    圖  8  (a) KT-Ni(0)@Ni(Ⅱ)-TPA的合成方案; (b) Ni(0)@Ni(Ⅱ)-TPA, KT-Ni(0)@Ni(Ⅱ)-TPA, Ni(Ⅱ)-TPA, Ni foams, 和RuO2/Ni foams在1 mol·L–1 KOH中OER的LSV曲線; (c) KT結構的“超疏水性”特征在OER過程中促進氧氣氣泡釋放示意圖

    Figure  8.  (a) Scheme for the synthesis of KT-Ni(0)@Ni(Ⅱ)-TPA; (b) LSV curves of Ni(0)@Ni(Ⅱ)-TPA, KT-Ni(0)@Ni(Ⅱ)-TPA, Ni(Ⅱ)-TPA, Ni foams, and RuO2/Ni foams for OER in 1 mol·L–1 KOH; (c) schematic of the “superaerophobic” feature of the KT architecture for promoting the release of oxygen bubbles during OER

    圖  9  (a) FeWO4–Ni3S2@C/NF合成示意圖; (b) FeWO4–Ni3S2@C/NF的掃描電鏡圖; (c) 1 mol·L–1 KOH溶液中FeWO4–Ni3S2@C/NF在OER過程中LSV曲線

    Figure  9.  (a) Synthesis of FeWO4–Ni3S2@C/NF; (b) SEM image of FeWO4–Ni3S2@C; (c) LSV curves of the FeWO4–Ni3S2@C/NF in 1 mol·L–1 KOH duringOER process

    表  1  大電流密度下水分解電催化劑對比分析

    Table  1.   Summary of state-of-art electrocatalysts for high-current-density water splitting

    ElectrocatalystsElectrolyte (KOH)/(mol·L–1)Overpotential/mV@current
    density/(mA·cm–2)
    Stability time/hRef.
    NiCe@NiFe/NF1359@10002031
    NiO–Fe3O4@NiCo2O41250@100010033
    (Ni,Fe)OOH1258@100012034
    Ni–Fe-OH@Ni3S2/NF1370@5005035
    469@100050
    NiFe/NF10240@5001.938
    270@1000
    NiCoV-LTH/NF1340@50018039
    373@1000180
    CF/VGSs/MoS2/FeCoNi(OH)x1225@5003040
    241@1000
    Co3O4/Fe0.33Co0.66P1291@80015044
    NiS2/Fe-P5306@80016045
    Co9S8@Fe3O41350@50012046
    Fe–Ni3S21290@100350051
    Er0.4Fe–MOF/NF1297@5002552
    326@1000
    NiFe-LDH/NF-S1309@50015054
    NiFe–NiSe@NIF1267@10010056
    NiFe LDH/NiS1325@100062
    FeWO4–WO3/NF1330@100010066
    KT-Ni(0)@Ni(II)-TPA1380@15008069
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Smalley R E. Nobel Laureate Smalley Speaks on Global and Nano Energy Challenges. America, 2004
    [2] Gong Y X, Yao J S, Wang P, et al. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chin J Chem Eng, 2022, 43: 282 doi: 10.1016/j.cjche.2022.02.010
    [3] Jing H Y, Zhu P, Zheng X B, et al. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv Powder Mater, 2022, 1(1): 100013 doi: 10.1016/j.apmate.2021.10.004
    [4] Liu P K, Han X. Comparative analysis on similarities and differences of hydrogen energy development in the World’s top 4 largest economies: A novel framework. Int J Hydrog Energy, 2022, 47(16): 9485 doi: 10.1016/j.ijhydene.2022.01.038
    [5] Zhao S Y, Xie R K, Kang L Q, et al. Enhancing hydrogen evolution electrocatalytic performance in neutral media via nitrogen and iron phosphide interactions. Small Sci, 2021, 1(7): 2100032 doi: 10.1002/smsc.202100032
    [6] Feng Y, Yang H T, Wang X, et al. Role of transition metals in catalyst designs for oxygen evolution reaction: A comprehensive review. Int J Hydrog Energy, 2022, 47(41): 17946 doi: 10.1016/j.ijhydene.2022.03.270
    [7] Avani A V, Anila E I. Recent advances of MoO3 based materials in energy catalysis: Applications in hydrogen evolution and oxygen evolution reactions. Int J Hydrog Energy, 2022, 47(47): 20475 doi: 10.1016/j.ijhydene.2022.04.252
    [8] Luo Y T, Zhang Z Y, Chhowalla M, et al. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv Mater, 2022, 34(16): e2108133 doi: 10.1002/adma.202108133
    [9] Guan D Q, Zhou W, Shao Z P. Rational design of superior electrocatalysts for water oxidation: Crystalline or amorphous structure? Small Sci, 2021, 1(9): 2100030
    [10] Zhang J, Wu J J, Guo H, et al. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv Mater, 2017, 29(42): 1701955 doi: 10.1002/adma.201701955
    [11] Dionigi F, Zeng Z H, Sinev I, et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat Commun, 2020, 11(1): 2522 doi: 10.1038/s41467-020-16237-1
    [12] Zhang L J, Zhuang L Z, Liu H L, et al. Beyond platinum: Defects abundant CoP3/Ni2P heterostructure for hydrogen evolution electrocatalysis. Small Sci, 2021, 1(4): 2000027 doi: 10.1002/smsc.202000027
    [13] Huang J E, Li F W, Ozden A, et al. CO2 electrolysis to multicarbon products in strong acid. Science, 2021, 372(6546): 1074 doi: 10.1126/science.abg6582
    [14] Wu Y Y, Yin J Q, Jiang W, et al. Constructing urchin-like Ni3S2@Ni3B on Ni plate as a highly efficient bifunctional electrocatalyst for water splitting reaction. Nanoscale, 2021, 13(42): 17953 doi: 10.1039/D1NR04965H
    [15] Luo Y T, Tang L, Khan U, et al. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat Commun, 2019, 10(1): 269 doi: 10.1038/s41467-018-07792-9
    [16] Zhang X Q. The development trend of and suggestions for China’s hydrogen energy industry. Engineering, 2021, 7(6): 719 doi: 10.1016/j.eng.2021.04.012
    [17] Xie X H, Du L, Yan L T, et al. Oxygen evolution reaction in alkaline environment: Material challenges and solutions. Adv Funct Mater, 2022, 32(21): 2110036 doi: 10.1002/adfm.202110036
    [18] Sun H M, Yan Z H, Liu F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv Mater, 2020, 32(3): 1806326 doi: 10.1002/adma.201806326
    [19] Maleki M, Sabour Rouhaghdam A, Barati Darband G, et al. Highly active and durable NiCoSeP nanostructured electrocatalyst for large-current-density hydrogen production. ACS Appl Energy Mater, 2022, 5(3): 2937 doi: 10.1021/acsaem.1c03625
    [20] Yu Y H, Chen Q R, Li J, et al. Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting. J Colloid Interface Sci, 2022, 607(Part 2): 1091
    [21] Li X P, Huang C, Han W K, et al. Transition metal-based electrocatalysts for overall water splitting. Chin Chem Lett, 2021, 32(9): 2597 doi: 10.1016/j.cclet.2021.01.047
    [22] Wang Y Q, Li Y M, Ding L P, et al. NiFe (sulfur) oxyhydroxide porous nanoclusters/Ni foam composite electrode drives a large-current-density oxygen evolution reaction with an ultra-low overpotential. J Mater Chem A, 2019, 7(32): 18816 doi: 10.1039/C9TA04478G
    [23] Zhang Y K, Wu C Q, Jiang H L, et al. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv Mater, 2018, 30(18): e1707522 doi: 10.1002/adma.201707522
    [24] Yang H D, Liu Y, Luo S, et al. Lateral-size-mediated efficient oxygen evolution reaction: Insights into the atomically thin quantum dot structure of NiFe2O4. ACS Catal, 2017, 7(8): 5557 doi: 10.1021/acscatal.7b00007
    [25] Wang D W, Chen Y T, Fan L B, et al. Bulk and surface dual modification of nickel-cobalt spinel with ruthenium toward highly efficient overall water splitting. Appl Catal B Environ, 2022, 305: 121081 doi: 10.1016/j.apcatb.2022.121081
    [26] Zhou S Z, Jang H, Qin Q, et al. Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction. Sci China Mater, 2021, 64(6): 1408 doi: 10.1007/s40843-020-1536-6
    [27] Wu Z C, Zou Z X, Huang J S, et al. Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J Catal, 2018, 358: 243 doi: 10.1016/j.jcat.2017.12.020
    [28] Tang F, Guo S J, Sun Y G, et al. Facile synthesis of Fe-doped CoO nanotubes as high-efficient electrocatalysts for oxygen evolution reaction. Small Struct, 2022, 3(4): 2100211 doi: 10.1002/sstr.202100211
    [29] Samanta A, Jana S. Ni-, Co-, and Mn-doped Fe2O3 nano-parallelepipeds for oxygen evolution. ACS Appl Nano Mater, 2021, 4(5): 5131 doi: 10.1021/acsanm.1c00581
    [30] Dou Y H, Yuan D, Yu L P, et al. Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis. Adv Mater, 2022, 34(2): e2104667 doi: 10.1002/adma.202104667
    [31] Liu G, Wang M H, Wu Y, et al. 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities. Appl Catal B Environ, 2020, 260: 118199 doi: 10.1016/j.apcatb.2019.118199
    [32] Landon J, Demeter E, ?no?lu N, et al. Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal, 2012, 2(8): 1793 doi: 10.1021/cs3002644
    [33] Yan G, Li G Z, Tan H Q, et al. Spinel-type ternary multimetal hybrid oxides with porous hierarchical structure grown on Ni foam as large-current-density water oxidation electrocatalyst. J Alloys Compd, 2020, 838: 155662 doi: 10.1016/j.jallcom.2020.155662
    [34] Liang C W, Zou P C, Nairan A, et al. Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ Sci, 2020, 13(1): 86 doi: 10.1039/C9EE02388G
    [35] Zou X, Liu Y P, Li G D, et al. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv Mater, 2017, 29(22): 1700404 doi: 10.1002/adma.201700404
    [36] Wang F L, Zhou Y N, Lv J Y, et al. Nickel hydroxide armour promoted CoP nanowires for alkaline hydrogen evolution at large current density. Int J Hydrog Energy, 2022, 47(2): 1016 doi: 10.1016/j.ijhydene.2021.10.117
    [37] Liu X M, Fan X, Huang H, et al. Electronic modulation of oxygen evolution on metal doped NiFe layered double hydroxides. J Colloid Interface Sci, 2021, 587: 385 doi: 10.1016/j.jcis.2020.12.023
    [38] Lu X Y, Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat Commun, 2015, 6: 6616 doi: 10.1038/ncomms7616
    [39] Liu Q Q, Huang J F, Zhang X, et al. Controllable conversion from single-crystal nanorods to polycrystalline nanosheets of NiCoV-LTH for oxygen evolution reaction at large current density. ACS Sustainable Chem Eng, 2020, 8(43): 16091 doi: 10.1021/acssuschemeng.0c06052
    [40] Ji X X, Lin Y H, Zeng J, et al. Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nat Commun, 2021, 12: 1380 doi: 10.1038/s41467-021-21742-y
    [41] Gao D H, Ren J W, Wang H, et al. An industry-applicable hybrid electrode for large current density hydrogen evolution reaction. J Power Sources, 2021, 516: 230635 doi: 10.1016/j.jpowsour.2021.230635
    [42] Li S S, Li E Z, An X W, et al. Transition metal-based catalysts for electrochemical water splitting at high current density: Current status and perspectives. Nanoscale, 2021, 13(30): 12788 doi: 10.1039/D1NR02592A
    [43] Zhang B, Shan J W, Wang W L, et al. Oxygen vacancy and core-shell heterojunction engineering of anemone-like CoP@CoOOH bifunctional electrocatalyst for efficient overall water splitting. Small, 2022, 18(12): 2106012 doi: 10.1002/smll.202106012
    [44] Zhang X Y, Li J, Yang Y, et al. Co3O4/Fe0.33Co0. 66 P interface nanowire for enhancing water oxidation catalysis at high current density. Adv Mater, 2018, 30(45): 1803551 doi: 10.1002/adma.201803551
    [45] Yu J, Zhang T, Xing C C, et al. Enhanced oxygen evolution catalytic activity of NiS2 by coupling with ferrous phosphite and phosphide. Sustainable Energy Fuels, 2021, 5(6): 1801 doi: 10.1039/D0SE01837F
    [46] Ji Q Q, Kong Y, Tan H, et al. Operando identification of active species and intermediates on sulfide interfaced by Fe3O4 for ultrastable alkaline oxygen evolution at large current density. ACS Catal, 2022, 12(8): 4318 doi: 10.1021/acscatal.2c01090
    [47] Patil K, Babar P, Li X, et al. Co–Fe–B nanochain electrocatalysts for oxygen evolution at high current density. ACS Appl Nano Mater, 2022, 5(5): 6260 doi: 10.1021/acsanm.2c00312
    [48] Zhang X Y, Yu W L, Zhao J, et al. Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density. Appl Mater Today, 2021, 22: 100913 doi: 10.1016/j.apmt.2020.100913
    [49] Zhang A, Liang Y X, Zhang H, et al. Doping regulation in transition metal compounds for electrocatalysis. Chem Soc Rev, 2021, 50(17): 9817 doi: 10.1039/D1CS00330E
    [50] Zhang J Y, Liu Y C, Xia B R, et al. Facile one-step synthesis of phosphorus-doped CoS2 as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 259: 955 doi: 10.1016/j.electacta.2017.11.043
    [51] Li D R, Wan W J, Wang Z W, et al. Self-derivation and surface reconstruction of Fe-doped Ni3S2 electrode realizing high-efficient and stable overall water and urea electrolysis. Adv Energy Mater, 2022, 12(39): 2201913 doi: 10.1002/aenm.202201913
    [52] Ma Y, Miao Y J, Mu G M, et al. Highly enhanced OER performance by Er-doped Fe-MOF nanoarray at large current densities. Nanomaterials, 2021, 11(7): 1847 doi: 10.3390/nano11071847
    [53] Li W J, Shen Q, Men D D, et al. Porous CoSe2@N-doped carbon nanowires: An ultra-high stable and large-current-density oxygen evolution electrocatalyst. Chem Commun, 2021, 57(14): 1774 doi: 10.1039/D0CC07647C
    [54] Wan Z H, Ma Z Z, Yuan H F, et al. Sulfur engineering on NiFe layered double hydroxide at ambient temperature for high current density oxygen evolution reaction. ACS Appl Energy Mater, 2022, 5(4): 4603 doi: 10.1021/acsaem.2c00018
    [55] Jiang X L, Yue X Q, Li Y X, et al. Anion-cation-dual doped tremella-like nickel phosphides for electrocatalytic water oxidation. Chem Eng J, 2021, 426: 130718 doi: 10.1016/j.cej.2021.130718
    [56] Chen J, Chen J P, Cui H, et al. Electronic structure and crystalline phase dual modulation via anion–cation Co-doping for boosting oxygen evolution with long-term stability under large current density. ACS Appl Mater Interfaces, 2019, 11(38): 34819 doi: 10.1021/acsami.9b08060
    [57] Zhu Y L, Zhou W, Yu J, et al. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem Mater, 2016, 28(6): 1691 doi: 10.1021/acs.chemmater.5b04457
    [58] Lin Q, Guo D Y, Zhou L, et al. Tuning the interface of Co1–xS/Co(OH)F by atomic replacement strategy toward high-performance electrocatalytic oxygen evolution. ACS Nano, 2022, 16(9): 15460 doi: 10.1021/acsnano.2c07588
    [59] Asnavandi M, Yin Y C, Li Y B, et al. Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe–OOH catalysts. ACS Energy Lett, 2018, 3(7): 1515 doi: 10.1021/acsenergylett.8b00696
    [60] Zhou J Q, Yu L, Zhu Q C, et al. Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: A 3D core-shell electrocatalyst for efficient water oxidation. J Mater Chem A, 2019, 7(30): 18118 doi: 10.1039/C9TA06347A
    [61] Che Q J, Li Q, Chen X H, et al. Assembling amorphous (Fe–Ni)Co–OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: Inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion. Appl Catal B Environ, 2020, 263: 118338 doi: 10.1016/j.apcatb.2019.118338
    [62] Wen Q L, Yang K, Huang D J, et al. Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv Energy Mater, 2021, 11(46): 2102353 doi: 10.1002/aenm.202102353
    [63] Zhang H J, Li X P, H?hnel A, et al. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv Funct Mater, 2018, 28(14): 1706847 doi: 10.1002/adfm.201706847
    [64] Sun H C, Yang J M, Li J G, et al. Synergistic coupling of NiTe nanoarrays with RuO2 and NiFe-LDH layers for high-efficiency electrochemical-/ photovoltage-driven overall water splitting. Appl Catal B Environ, 2020, 272: 118988 doi: 10.1016/j.apcatb.2020.118988
    [65] Dong Q B, Shuai C, Mo Z L, et al. CeO2 nanoparticles@ NiFe-LDH nanosheet heterostructure as electrocatalysts for oxygen evolution reaction. J Solid State Chem, 2021, 296: 121967 doi: 10.1016/j.jssc.2021.121967
    [66] Shen F, Wang Z L, Wang Y M, et al. Highly active bifunctional catalyst: Constructing FeWO4–WO3 heterostructure for water and hydrazine oxidation at large current density. Nano Res, 2021, 14(11): 4356 doi: 10.1007/s12274-021-3548-z
    [67] Chung D Y, Lopes P P, Martins P F B D, et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat Energy, 2020, 5(7): 550 doi: 10.1038/s41560-020-0638-1
    [68] Wang F Q, Zhang Y Y, Zhang J Q, et al. In situ electrochemically formed Ag/NiOOH/Ni3S2 heterostructure electrocatalysts with exceptional performance toward oxygen evolution reaction. ACS Sustainable Chem Eng, 2022, 10(18): 5976 doi: 10.1021/acssuschemeng.2c00760
    [69] Hu Q, Wang Z Y, Huang X W, et al. Integrating well-controlled core-shell structures into “superaerophobic” electrodes for water oxidation at large current densities. Appl Catal B Environ, 2021, 286: 119920 doi: 10.1016/j.apcatb.2021.119920
    [70] Li R J, Qi Y F, Wang Q, et al. Heterometallic feed ratio-dominated oxygen evolution activity in self-supported metal-organic framework nanosheet arrays electrocatalyst. Z Anorg Allg Chem, 2020, 646(17): 1412 doi: 10.1002/zaac.202000121
    [71] Wang Z L, Qian G F, Yu T Q, et al. Carbon encapsulated FeWO4–Ni3S2 nanosheets as a highly active catalyst for overall water splitting at large current density. Chem Eng J, 2022, 434: 134669 doi: 10.1016/j.cej.2022.134669
    [72] Sun H, Min Y X, Yang W J, et al. Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting. ACS Catal, 2019, 9(10): 8882 doi: 10.1021/acscatal.9b02264
    [73] Debata S, Patra S, Banerjee S, et al. Controlled hydrothermal synthesis of graphene supported NiCo2O4 coral-like nanostructures: An efficient electrocatalyst for overall water splitting. Appl Surf Sci, 2018, 449: 203 doi: 10.1016/j.apsusc.2018.01.302
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  454
  • HTML全文瀏覽量:  275
  • PDF下載量:  99
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-09-20
  • 網絡出版日期:  2023-01-12
  • 刊出日期:  2023-07-25

目錄

    /

    返回文章
    返回