Research and perspectives on electrocatalytic water splitting and large current density oxygen evolution reaction
-
摘要: 當今時代對可持續能源的迫切需求推動了可再生能源技術的不斷改進,其中氫能因其清潔環保且能量密度高而受到了科研人員廣泛關注。電解水制氫作為一種綠色環保的制氫方式,其陽極析氧反應(OER)的高能耗限制了電解水制氫技術的廣泛應用。近年來,高性能的OER催化劑的研究得到了長足發展,但催化劑的測試范圍小,且很少能夠連續工作數百小時,遠遠不能滿足實際應用的需求。為了更好的適用于工業應用,OER催化劑需要滿足更苛刻的測試環境,如在低過電位下提供大電流密度、在強氣體排放過程中維持穩定性和耐久性,因此開發在大電流密度下的高活性OER催化劑是當前工作的重中之重。結合大電流OER催化劑的研究進展,本文首先提出氫能是目前最有前途的能源之一,并調研了大電流密度下電催化劑的研究現狀。其次通過對OER機理進行分析,發現采取元素摻雜、界面工程、缺陷工程和形貌工程等措施可以提升催化劑在大電流密度下的活性。最后,對大電流析氧領域在工業發展中現階段存在的挑戰及未來發展方向進行了展望。Abstract: With the consumption of fossil fuels and the deterioration of the ecological environment, the need for developing new, efficient, and sustainable sources of clean energy is urgent. The importance of “green hydrogen” in electrolytic water splitting has attracted worldwide attention not only from the scientific community but also from governments and industries. Hydrogen energy is considered an ideal alternative to fossil fuels because of its high energy density, environmental friendliness, and low pollution level. Hydrogen production from renewable energy sources using the electrolysis of water is the lowest carbon emission process of the many current hydrogen source options. The electrolytic water reaction is subdivided into two half-reactions, namely, the hydrogen evolution reaction (HER) at the cathode and the oxygen evolution reaction (OER) at the anode. The HER is a relatively simple two-electron reaction. Compared to the HER at the cathode, the OER at the anode is a four-electron transfer process with slower kinetics and higher energy barriers. It is the decisive step in the electrolytic water reaction, receiving considerable attention from scholars. Recently, considerable developments in the research of high-performance electrolytic water catalysts have been reported as successful; however, the catalysts have been tested on a very small scale, usually under laboratory conditions, and can rarely operate continuously for hundreds of hours, far from meeting the needs of practical applications. Industrial-level electrocatalytic hydrogen production requires catalysts that are highly active, cost-effective, and stable at high current densities; thus, a great deal of work has explored efficient and highly durable active electrocatalysts to overcome the kinetic barriers that inhibit the reaction, particularly for the complex four-electron reaction of the OER. In summary, catalysts for oxygen precipitation reactions at high current densities will be the focus of future research. This paper reviews the current status of hydrogen energy development and various hydrogen production methods at home and abroad, focusing on an analysis of electrolytic water hydrogen production technology and proposing the requirements under large-scale industrial applications. Studying the OER mechanism has revealed that the activity of catalysts at high current densities can be enhanced by the following strategies: heteroatom doping, defect engineering, interface engineering, in situ self-growth, etc. Finally, the challenges in the field of high-current oxygen analysis at this stage of industrial development and the future direction of development are presented.
-
圖 3 (a) 鈷摻雜NiO–Fe3O4@NiCo2O4 HNAs的制備示意圖; (b) 1 mol·L–1 KOH溶液中鈷摻雜NiO–Fe3O4@NiCo2O4 HNAs、NiO–Fe3O4、NiCo2O4、IrO2和NF的OER線性掃描伏安(LSV)曲線; (c) 鈷摻雜NiO–Fe3O4@NiCo2O4 HNAs在質量分數為30%的KOH溶液中過電位為270 mV時的計時電流曲線
Figure 3. (a) Synthetic schematic of Co-doped NiO–Fe3O4@NiCo2O4 HNAs; (b) OER linear sweep voltammetry (LSV) curves of the Co-doped NiO–Fe3O4@NiCo2O4 HNAs, NiO–Fe3O4, NiCo2O4, IrO2, and NF in 1 mol·L–1 KOH solution; (c) chronoamperometry curves of the Co-doped NiO–Fe3O4@NiCo2O4 HNAs in 30% (mass fraction) KOH at an overpotential of 270 mV
圖 4 (a) CF/VMFP的合成過程示意圖; (b) 1 mol·L–1 KOH溶液中CF/VMFP和對比樣的LSV曲線; (c) CF/VMFP在1 mol·L–1 KOH溶液中電流密度為250 mA·cm–2時的計時電位曲線
Figure 4. (a) Schematic for the synthesis process of CF/VMFP; (b) OER LSV curves of the CF/VMFP and othercatalysts in 1 mol·L–1 KOH; (c) chronometric potential curve of CF/VMFP in 1 mol·L–1 KOH at a current density of 250 mA·cm–2
圖 5 (a) Co9S8@Fe3O4的合成示意圖; (b) 1 mol·L–1 KOH溶液中Co9S8@Fe3O4的OER過程中LSV曲線,插圖為不同催化劑在250和500 mA·cm–2處的過電位; (c) Co9S8@Fe3O4和Co9S8在1 mol·L–1 KOH中電流密度為500 mA·cm–2時的計時電位曲線
Figure 5. (a) Synthetic schematic of the Co9S8@Fe3O4; (b) LSV curves of Co9S8@Fe3O4 for OER in 1 mol·L–1 KOH. The inset shows overpotentials at 250 and 500 mA·cm–2 for the corresponding catalysts; (c) chronometric potential curves of Co9S8@Fe3O4 and Co9S8 in 1 mol·L–1 KOH at a current density of 500 mA·cm–2
圖 7 (a) Co1–xS/Co(OH)F/CC形貌示意圖; (b) Co1–xS/Co(OH)F/CC的掃描電鏡圖; (c) S取代F原子形成Co(OH)F-S樣品的示意圖; (d) 1 mol·L–1 KOH溶液中Co1–xS/Co(OH)F/CC和對比樣的OER LSV曲線
Figure 7. (a) Schematic of the morphology of Co1–xS/Co(OH)F/CC; (b) SEM images of Co1–xS/Co(OH)F/CC; (c) schematic of S replacing F atoms to form a Co(OH)F-S sample; (d) OER LSV curves of the Co1–xS/Co(OH)F/CC and contrast catalysts in 1 mol·L–1 KOH
圖 8 (a) KT-Ni(0)@Ni(Ⅱ)-TPA的合成方案; (b) Ni(0)@Ni(Ⅱ)-TPA, KT-Ni(0)@Ni(Ⅱ)-TPA, Ni(Ⅱ)-TPA, Ni foams, 和RuO2/Ni foams在1 mol·L–1 KOH中OER的LSV曲線; (c) KT結構的“超疏水性”特征在OER過程中促進氧氣氣泡釋放示意圖
Figure 8. (a) Scheme for the synthesis of KT-Ni(0)@Ni(Ⅱ)-TPA; (b) LSV curves of Ni(0)@Ni(Ⅱ)-TPA, KT-Ni(0)@Ni(Ⅱ)-TPA, Ni(Ⅱ)-TPA, Ni foams, and RuO2/Ni foams for OER in 1 mol·L–1 KOH; (c) schematic of the “superaerophobic” feature of the KT architecture for promoting the release of oxygen bubbles during OER
表 1 大電流密度下水分解電催化劑對比分析
Table 1. Summary of state-of-art electrocatalysts for high-current-density water splitting
Electrocatalysts Electrolyte (KOH)/(mol·L–1) Overpotential/mV@current
density/(mA·cm–2)Stability time/h Ref. NiCe@NiFe/NF 1 359@1000 20 31 NiO–Fe3O4@NiCo2O4 1 250@1000 100 33 (Ni,Fe)OOH 1 258@1000 120 34 Ni–Fe-OH@Ni3S2/NF 1 370@500 50 35 469@1000 50 NiFe/NF 10 240@500 1.9 38 270@1000 — NiCoV-LTH/NF 1 340@500 180 39 373@1000 180 CF/VGSs/MoS2/FeCoNi(OH)x 1 225@500 30 40 241@1000 — Co3O4/Fe0.33Co0.66P 1 291@800 150 44 NiS2/Fe-P 5 306@800 160 45 Co9S8@Fe3O4 1 350@500 120 46 Fe–Ni3S2 1 290@100 3500 51 Er0.4Fe–MOF/NF 1 297@500 25 52 326@1000 — NiFe-LDH/NF-S 1 309@500 150 54 NiFe–NiSe@NIF 1 267@100 100 56 NiFe LDH/NiS 1 325@1000 — 62 FeWO4–WO3/NF 1 330@1000 100 66 KT-Ni(0)@Ni(II)-TPA 1 380@1500 80 69 www.77susu.com -
參考文獻
[1] Smalley R E. Nobel Laureate Smalley Speaks on Global and Nano Energy Challenges. America, 2004 [2] Gong Y X, Yao J S, Wang P, et al. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chin J Chem Eng, 2022, 43: 282 doi: 10.1016/j.cjche.2022.02.010 [3] Jing H Y, Zhu P, Zheng X B, et al. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv Powder Mater, 2022, 1(1): 100013 doi: 10.1016/j.apmate.2021.10.004 [4] Liu P K, Han X. Comparative analysis on similarities and differences of hydrogen energy development in the World’s top 4 largest economies: A novel framework. Int J Hydrog Energy, 2022, 47(16): 9485 doi: 10.1016/j.ijhydene.2022.01.038 [5] Zhao S Y, Xie R K, Kang L Q, et al. Enhancing hydrogen evolution electrocatalytic performance in neutral media via nitrogen and iron phosphide interactions. Small Sci, 2021, 1(7): 2100032 doi: 10.1002/smsc.202100032 [6] Feng Y, Yang H T, Wang X, et al. Role of transition metals in catalyst designs for oxygen evolution reaction: A comprehensive review. Int J Hydrog Energy, 2022, 47(41): 17946 doi: 10.1016/j.ijhydene.2022.03.270 [7] Avani A V, Anila E I. Recent advances of MoO3 based materials in energy catalysis: Applications in hydrogen evolution and oxygen evolution reactions. Int J Hydrog Energy, 2022, 47(47): 20475 doi: 10.1016/j.ijhydene.2022.04.252 [8] Luo Y T, Zhang Z Y, Chhowalla M, et al. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv Mater, 2022, 34(16): e2108133 doi: 10.1002/adma.202108133 [9] Guan D Q, Zhou W, Shao Z P. Rational design of superior electrocatalysts for water oxidation: Crystalline or amorphous structure? Small Sci, 2021, 1(9): 2100030 [10] Zhang J, Wu J J, Guo H, et al. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv Mater, 2017, 29(42): 1701955 doi: 10.1002/adma.201701955 [11] Dionigi F, Zeng Z H, Sinev I, et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat Commun, 2020, 11(1): 2522 doi: 10.1038/s41467-020-16237-1 [12] Zhang L J, Zhuang L Z, Liu H L, et al. Beyond platinum: Defects abundant CoP3/Ni2P heterostructure for hydrogen evolution electrocatalysis. Small Sci, 2021, 1(4): 2000027 doi: 10.1002/smsc.202000027 [13] Huang J E, Li F W, Ozden A, et al. CO2 electrolysis to multicarbon products in strong acid. Science, 2021, 372(6546): 1074 doi: 10.1126/science.abg6582 [14] Wu Y Y, Yin J Q, Jiang W, et al. Constructing urchin-like Ni3S2@Ni3B on Ni plate as a highly efficient bifunctional electrocatalyst for water splitting reaction. Nanoscale, 2021, 13(42): 17953 doi: 10.1039/D1NR04965H [15] Luo Y T, Tang L, Khan U, et al. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat Commun, 2019, 10(1): 269 doi: 10.1038/s41467-018-07792-9 [16] Zhang X Q. The development trend of and suggestions for China’s hydrogen energy industry. Engineering, 2021, 7(6): 719 doi: 10.1016/j.eng.2021.04.012 [17] Xie X H, Du L, Yan L T, et al. Oxygen evolution reaction in alkaline environment: Material challenges and solutions. Adv Funct Mater, 2022, 32(21): 2110036 doi: 10.1002/adfm.202110036 [18] Sun H M, Yan Z H, Liu F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv Mater, 2020, 32(3): 1806326 doi: 10.1002/adma.201806326 [19] Maleki M, Sabour Rouhaghdam A, Barati Darband G, et al. Highly active and durable NiCoSeP nanostructured electrocatalyst for large-current-density hydrogen production. ACS Appl Energy Mater, 2022, 5(3): 2937 doi: 10.1021/acsaem.1c03625 [20] Yu Y H, Chen Q R, Li J, et al. Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting. J Colloid Interface Sci, 2022, 607(Part 2): 1091 [21] Li X P, Huang C, Han W K, et al. Transition metal-based electrocatalysts for overall water splitting. Chin Chem Lett, 2021, 32(9): 2597 doi: 10.1016/j.cclet.2021.01.047 [22] Wang Y Q, Li Y M, Ding L P, et al. NiFe (sulfur) oxyhydroxide porous nanoclusters/Ni foam composite electrode drives a large-current-density oxygen evolution reaction with an ultra-low overpotential. J Mater Chem A, 2019, 7(32): 18816 doi: 10.1039/C9TA04478G [23] Zhang Y K, Wu C Q, Jiang H L, et al. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv Mater, 2018, 30(18): e1707522 doi: 10.1002/adma.201707522 [24] Yang H D, Liu Y, Luo S, et al. Lateral-size-mediated efficient oxygen evolution reaction: Insights into the atomically thin quantum dot structure of NiFe2O4. ACS Catal, 2017, 7(8): 5557 doi: 10.1021/acscatal.7b00007 [25] Wang D W, Chen Y T, Fan L B, et al. Bulk and surface dual modification of nickel-cobalt spinel with ruthenium toward highly efficient overall water splitting. Appl Catal B Environ, 2022, 305: 121081 doi: 10.1016/j.apcatb.2022.121081 [26] Zhou S Z, Jang H, Qin Q, et al. Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction. Sci China Mater, 2021, 64(6): 1408 doi: 10.1007/s40843-020-1536-6 [27] Wu Z C, Zou Z X, Huang J S, et al. Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J Catal, 2018, 358: 243 doi: 10.1016/j.jcat.2017.12.020 [28] Tang F, Guo S J, Sun Y G, et al. Facile synthesis of Fe-doped CoO nanotubes as high-efficient electrocatalysts for oxygen evolution reaction. Small Struct, 2022, 3(4): 2100211 doi: 10.1002/sstr.202100211 [29] Samanta A, Jana S. Ni-, Co-, and Mn-doped Fe2O3 nano-parallelepipeds for oxygen evolution. ACS Appl Nano Mater, 2021, 4(5): 5131 doi: 10.1021/acsanm.1c00581 [30] Dou Y H, Yuan D, Yu L P, et al. Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis. Adv Mater, 2022, 34(2): e2104667 doi: 10.1002/adma.202104667 [31] Liu G, Wang M H, Wu Y, et al. 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities. Appl Catal B Environ, 2020, 260: 118199 doi: 10.1016/j.apcatb.2019.118199 [32] Landon J, Demeter E, ?no?lu N, et al. Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal, 2012, 2(8): 1793 doi: 10.1021/cs3002644 [33] Yan G, Li G Z, Tan H Q, et al. Spinel-type ternary multimetal hybrid oxides with porous hierarchical structure grown on Ni foam as large-current-density water oxidation electrocatalyst. J Alloys Compd, 2020, 838: 155662 doi: 10.1016/j.jallcom.2020.155662 [34] Liang C W, Zou P C, Nairan A, et al. Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ Sci, 2020, 13(1): 86 doi: 10.1039/C9EE02388G [35] Zou X, Liu Y P, Li G D, et al. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv Mater, 2017, 29(22): 1700404 doi: 10.1002/adma.201700404 [36] Wang F L, Zhou Y N, Lv J Y, et al. Nickel hydroxide armour promoted CoP nanowires for alkaline hydrogen evolution at large current density. Int J Hydrog Energy, 2022, 47(2): 1016 doi: 10.1016/j.ijhydene.2021.10.117 [37] Liu X M, Fan X, Huang H, et al. Electronic modulation of oxygen evolution on metal doped NiFe layered double hydroxides. J Colloid Interface Sci, 2021, 587: 385 doi: 10.1016/j.jcis.2020.12.023 [38] Lu X Y, Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat Commun, 2015, 6: 6616 doi: 10.1038/ncomms7616 [39] Liu Q Q, Huang J F, Zhang X, et al. Controllable conversion from single-crystal nanorods to polycrystalline nanosheets of NiCoV-LTH for oxygen evolution reaction at large current density. ACS Sustainable Chem Eng, 2020, 8(43): 16091 doi: 10.1021/acssuschemeng.0c06052 [40] Ji X X, Lin Y H, Zeng J, et al. Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nat Commun, 2021, 12: 1380 doi: 10.1038/s41467-021-21742-y [41] Gao D H, Ren J W, Wang H, et al. An industry-applicable hybrid electrode for large current density hydrogen evolution reaction. J Power Sources, 2021, 516: 230635 doi: 10.1016/j.jpowsour.2021.230635 [42] Li S S, Li E Z, An X W, et al. Transition metal-based catalysts for electrochemical water splitting at high current density: Current status and perspectives. Nanoscale, 2021, 13(30): 12788 doi: 10.1039/D1NR02592A [43] Zhang B, Shan J W, Wang W L, et al. Oxygen vacancy and core-shell heterojunction engineering of anemone-like CoP@CoOOH bifunctional electrocatalyst for efficient overall water splitting. Small, 2022, 18(12): 2106012 doi: 10.1002/smll.202106012 [44] Zhang X Y, Li J, Yang Y, et al. Co3O4/Fe0.33Co0. 66 P interface nanowire for enhancing water oxidation catalysis at high current density. Adv Mater, 2018, 30(45): 1803551 doi: 10.1002/adma.201803551 [45] Yu J, Zhang T, Xing C C, et al. Enhanced oxygen evolution catalytic activity of NiS2 by coupling with ferrous phosphite and phosphide. Sustainable Energy Fuels, 2021, 5(6): 1801 doi: 10.1039/D0SE01837F [46] Ji Q Q, Kong Y, Tan H, et al. Operando identification of active species and intermediates on sulfide interfaced by Fe3O4 for ultrastable alkaline oxygen evolution at large current density. ACS Catal, 2022, 12(8): 4318 doi: 10.1021/acscatal.2c01090 [47] Patil K, Babar P, Li X, et al. Co–Fe–B nanochain electrocatalysts for oxygen evolution at high current density. ACS Appl Nano Mater, 2022, 5(5): 6260 doi: 10.1021/acsanm.2c00312 [48] Zhang X Y, Yu W L, Zhao J, et al. Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density. Appl Mater Today, 2021, 22: 100913 doi: 10.1016/j.apmt.2020.100913 [49] Zhang A, Liang Y X, Zhang H, et al. Doping regulation in transition metal compounds for electrocatalysis. Chem Soc Rev, 2021, 50(17): 9817 doi: 10.1039/D1CS00330E [50] Zhang J Y, Liu Y C, Xia B R, et al. Facile one-step synthesis of phosphorus-doped CoS2 as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 259: 955 doi: 10.1016/j.electacta.2017.11.043 [51] Li D R, Wan W J, Wang Z W, et al. Self-derivation and surface reconstruction of Fe-doped Ni3S2 electrode realizing high-efficient and stable overall water and urea electrolysis. Adv Energy Mater, 2022, 12(39): 2201913 doi: 10.1002/aenm.202201913 [52] Ma Y, Miao Y J, Mu G M, et al. Highly enhanced OER performance by Er-doped Fe-MOF nanoarray at large current densities. Nanomaterials, 2021, 11(7): 1847 doi: 10.3390/nano11071847 [53] Li W J, Shen Q, Men D D, et al. Porous CoSe2@N-doped carbon nanowires: An ultra-high stable and large-current-density oxygen evolution electrocatalyst. Chem Commun, 2021, 57(14): 1774 doi: 10.1039/D0CC07647C [54] Wan Z H, Ma Z Z, Yuan H F, et al. Sulfur engineering on NiFe layered double hydroxide at ambient temperature for high current density oxygen evolution reaction. ACS Appl Energy Mater, 2022, 5(4): 4603 doi: 10.1021/acsaem.2c00018 [55] Jiang X L, Yue X Q, Li Y X, et al. Anion-cation-dual doped tremella-like nickel phosphides for electrocatalytic water oxidation. Chem Eng J, 2021, 426: 130718 doi: 10.1016/j.cej.2021.130718 [56] Chen J, Chen J P, Cui H, et al. Electronic structure and crystalline phase dual modulation via anion–cation Co-doping for boosting oxygen evolution with long-term stability under large current density. ACS Appl Mater Interfaces, 2019, 11(38): 34819 doi: 10.1021/acsami.9b08060 [57] Zhu Y L, Zhou W, Yu J, et al. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem Mater, 2016, 28(6): 1691 doi: 10.1021/acs.chemmater.5b04457 [58] Lin Q, Guo D Y, Zhou L, et al. Tuning the interface of Co1–xS/Co(OH)F by atomic replacement strategy toward high-performance electrocatalytic oxygen evolution. ACS Nano, 2022, 16(9): 15460 doi: 10.1021/acsnano.2c07588 [59] Asnavandi M, Yin Y C, Li Y B, et al. Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe–OOH catalysts. ACS Energy Lett, 2018, 3(7): 1515 doi: 10.1021/acsenergylett.8b00696 [60] Zhou J Q, Yu L, Zhu Q C, et al. Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: A 3D core-shell electrocatalyst for efficient water oxidation. J Mater Chem A, 2019, 7(30): 18118 doi: 10.1039/C9TA06347A [61] Che Q J, Li Q, Chen X H, et al. Assembling amorphous (Fe–Ni)Co–OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: Inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion. Appl Catal B Environ, 2020, 263: 118338 doi: 10.1016/j.apcatb.2019.118338 [62] Wen Q L, Yang K, Huang D J, et al. Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv Energy Mater, 2021, 11(46): 2102353 doi: 10.1002/aenm.202102353 [63] Zhang H J, Li X P, H?hnel A, et al. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv Funct Mater, 2018, 28(14): 1706847 doi: 10.1002/adfm.201706847 [64] Sun H C, Yang J M, Li J G, et al. Synergistic coupling of NiTe nanoarrays with RuO2 and NiFe-LDH layers for high-efficiency electrochemical-/ photovoltage-driven overall water splitting. Appl Catal B Environ, 2020, 272: 118988 doi: 10.1016/j.apcatb.2020.118988 [65] Dong Q B, Shuai C, Mo Z L, et al. CeO2 nanoparticles@ NiFe-LDH nanosheet heterostructure as electrocatalysts for oxygen evolution reaction. J Solid State Chem, 2021, 296: 121967 doi: 10.1016/j.jssc.2021.121967 [66] Shen F, Wang Z L, Wang Y M, et al. Highly active bifunctional catalyst: Constructing FeWO4–WO3 heterostructure for water and hydrazine oxidation at large current density. Nano Res, 2021, 14(11): 4356 doi: 10.1007/s12274-021-3548-z [67] Chung D Y, Lopes P P, Martins P F B D, et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat Energy, 2020, 5(7): 550 doi: 10.1038/s41560-020-0638-1 [68] Wang F Q, Zhang Y Y, Zhang J Q, et al. In situ electrochemically formed Ag/NiOOH/Ni3S2 heterostructure electrocatalysts with exceptional performance toward oxygen evolution reaction. ACS Sustainable Chem Eng, 2022, 10(18): 5976 doi: 10.1021/acssuschemeng.2c00760 [69] Hu Q, Wang Z Y, Huang X W, et al. Integrating well-controlled core-shell structures into “superaerophobic” electrodes for water oxidation at large current densities. Appl Catal B Environ, 2021, 286: 119920 doi: 10.1016/j.apcatb.2021.119920 [70] Li R J, Qi Y F, Wang Q, et al. Heterometallic feed ratio-dominated oxygen evolution activity in self-supported metal-organic framework nanosheet arrays electrocatalyst. Z Anorg Allg Chem, 2020, 646(17): 1412 doi: 10.1002/zaac.202000121 [71] Wang Z L, Qian G F, Yu T Q, et al. Carbon encapsulated FeWO4–Ni3S2 nanosheets as a highly active catalyst for overall water splitting at large current density. Chem Eng J, 2022, 434: 134669 doi: 10.1016/j.cej.2022.134669 [72] Sun H, Min Y X, Yang W J, et al. Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting. ACS Catal, 2019, 9(10): 8882 doi: 10.1021/acscatal.9b02264 [73] Debata S, Patra S, Banerjee S, et al. Controlled hydrothermal synthesis of graphene supported NiCo2O4 coral-like nanostructures: An efficient electrocatalyst for overall water splitting. Appl Surf Sci, 2018, 449: 203 doi: 10.1016/j.apsusc.2018.01.302 -