<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

沉管隧道鋼殼在海水中的加速腐蝕

高倩鈺 曹航 金文良 張曉虎 劉媛媛

高倩鈺, 曹航, 金文良, 張曉虎, 劉媛媛. 沉管隧道鋼殼在海水中的加速腐蝕[J]. 工程科學學報, 2023, 45(6): 941-948. doi: 10.13374/j.issn2095-9389.2022.09.09.001
引用本文: 高倩鈺, 曹航, 金文良, 張曉虎, 劉媛媛. 沉管隧道鋼殼在海水中的加速腐蝕[J]. 工程科學學報, 2023, 45(6): 941-948. doi: 10.13374/j.issn2095-9389.2022.09.09.001
GAO Qian-yu, CAO Hang, JIN Wen-liang, ZHANG Xiao-hu, LIU Yuan-yuan. Accelerated corrosion of the steel shell of an immersed tube tunnel in seawater[J]. Chinese Journal of Engineering, 2023, 45(6): 941-948. doi: 10.13374/j.issn2095-9389.2022.09.09.001
Citation: GAO Qian-yu, CAO Hang, JIN Wen-liang, ZHANG Xiao-hu, LIU Yuan-yuan. Accelerated corrosion of the steel shell of an immersed tube tunnel in seawater[J]. Chinese Journal of Engineering, 2023, 45(6): 941-948. doi: 10.13374/j.issn2095-9389.2022.09.09.001

沉管隧道鋼殼在海水中的加速腐蝕

doi: 10.13374/j.issn2095-9389.2022.09.09.001
基金項目: 廣東省重點領域研發計劃項目(2019B111105002)
詳細信息
    通訊作者:

    E-mail: 56194030@qq.com

  • 中圖分類號: TB304

Accelerated corrosion of the steel shell of an immersed tube tunnel in seawater

More Information
  • 摘要: 沉管隧道置于不易檢查和維護的海泥區域,其鋼殼結構受到海水的侵蝕,會縮短其服役周期,腐蝕嚴重則會影響沉管隧道的安全運行。深中通道(又稱“深中大橋”)是國內首個鋼殼式沉管隧道,耐久性要求100年,針對深中通道鋼殼混凝土沉管的服役環境及超高的耐久性要求等諸多特征,且目前國內外可以借鑒的工程和研究很少,因此需要研究揭示鋼殼外壁在海洋環境下的腐蝕機理和腐蝕發展規律。本文采用室內腐蝕模擬加速試驗及電化學分析測試等,對深中通道沉管隧道鋼殼所用Q390C低合金高強度結構鋼在模擬海水條件下的腐蝕發生發展規律進行研究。研究發現Q390C在海水中腐蝕產物主要為Fe3O4、α-FeOOH和γ-FeOOH及少量CaCO3,其均勻腐蝕和局部腐蝕速率都呈指數關系下降,最終趨于穩定。

     

  • 圖  1  不同試驗周期腐蝕模擬加速試驗后試樣宏觀形貌. (a) 1 d; (b) 7 d; (c) 15 d; (d) 30 d; (e) 90 d; (f) 180 d; (g) 365 d

    Figure  1.  Photograph of the samples after corrosion simulation accelerated experiment at different test cycles: (a) 1 d; (b) 7 d; (c) 15 d; (d) 30 d; (e) 90 d; (f) 180 d; (g) 365 d

    圖  2  不同試驗周期腐蝕模擬加速試驗后試樣微觀形貌. (a) 1 d;(b) 7 d; (c) 15 d; (d) 30 d; (e) 90 d; (f) 180 d; (g~h) 365 d

    Figure  2.  SEM images of samples after corrosion simulation accelerated experiment at different test cycle: (a) 1 d; (b) 7 d; (c) 15 d; (d) 30 d; (e) 90 d; (f) 180 d; (g–h) 365 d

    圖  3  試樣不同腐蝕周期的點蝕. (a) 15 d; (b) 30 d; (c) 90 d; (d) 180 d; (e~f) 365 d

    Figure  3.  Pitting corrosion of the sample at different test cycle: (a) 15 d; (b) 30 d; (c) 90 d; (d) 180 d; (e–f) 365 d

    圖  4  不同周期試驗后腐蝕產物XRD圖譜

    Figure  4.  XRD patterns of corrosion products after different cycles of experiments

    圖  5  不同試驗周期腐蝕速率曲線

    Figure  5.  Corrosion rate curves of different test cycles

    圖  6  不同試驗周期試樣的極化曲線

    Figure  6.  Polarization curves of different experimental periods

    圖  7  試樣在不同試驗周期的阻抗圖

    Figure  7.  Impedance plot of the specimen at different test cycles

    圖  8  EIS等效電路圖

    Figure  8.  Equivalent circuit diagram corresponding to EIS

    表  1  Q390C的化學成分( 質量分數)

    Table  1.   Chemical composition of Q390C %

    CSiMnSPCrNiTiVAlFe
    0.200.501.700.030.030.300.500.050.130.015Bal.
    下載: 導出CSV

    表  2  裸鋼試樣在不同試驗周期的腐蝕速率

    Table  2.   Corrosion rate of bare steel specimens at different test cycles

    Test cycle/dUniform corrosion rate/(mm·a–1)Local corrosion rate/(mm·a–1)
    10.3039
    70.1609
    150.14520.3731
    300.12910.3569
    900.10880.1663
    1800.10220.1136
    3650.08190.0990
    下載: 導出CSV

    表  3  EIS擬合得到的電化學參數

    Table  3.   Electrochemical parameters obtained by EIS fitting

    Test cycle/dRp/(Ω·cm2
    11517
    71235
    15831
    30723
    901114
    1801223
    3652294
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Jiang S P, Zhang E Q, Guo J, et al. Experimental research on fire protection for immersed tunnel joint. Chin J Undergr Space Eng, 2016, 12(3): 607

    蔣樹屏, 張恩情, 郭軍, 等. 沉管隧道接頭構件耐火試驗研究. 地下空間與工程學報, 2016, 12(3):607
    [2] Chen Y. Application and developing trends of immersed tunnel. Tunn Constr, 2017, 37(4): 387

    陳越. 沉管隧道技術應用及發展趨勢. 隧道建設, 2017, 37(4):387
    [3] Liu L F, Lin W, Yin H Q, et al. Construction of immersed tunnel engineering in the world and development status of immersed tunnel technology in China. China Harbour Eng, 2021, 41(8): 71

    劉凌鋒, 林巍, 尹海卿, 等. 世界交通沉管隧道工程建造情況與我國沉管科技發展現狀. 中國港灣建設, 2021, 41(8):71
    [4] Song H S, Chen X Y, Liang Z X, et al. Development and application of measurement software for steel shell of immersed tunnel based on Python. Yangtze River, 2020, 51(9): 223 doi: 10.16232/j.cnki.1001-4179.2020.09.039

    宋華山, 陳向陽, 梁柱信, 等. 基于Python的沉管鋼殼測量軟件開發與應用. 人民長江, 2020, 51(9):223 doi: 10.16232/j.cnki.1001-4179.2020.09.039
    [5] Lu M, Zhu Z X. Optimization and discussion of waterproofing and anti - corrosion design of immersed tunnel. China Build Waterproofing, 2010(2): 13 doi: 10.3969/j.issn.1007-497X.2010.02.005

    陸明, 朱祖熹. 沉管隧道防水防腐設計的優化及其探討. 中國建筑防水, 2010(2):13 doi: 10.3969/j.issn.1007-497X.2010.02.005
    [6] Deep channel immersed tunnel-the world’s first large-scale immersed tunnel with steel-shell concrete composite structure. Tunn Rail Transit, 2020(4): 64

    深中通道沉管隧道—世界首條大規模采用鋼殼混凝土組合結構的沉管隧道. 隧道與軌道交通, 2020(4): 64
    [7] Zhao Y T. Song S Y, Wang X C, et al. Subsea structure sacrificial anode protection mold experiment and simulation calculation // Summary of the 10th National Corrosion Conference. Nanchang, 2019: 237

    趙永韜, 宋神友, 汪相辰, 等. 海底結構犧牲陽極保護物模實驗和仿真計算. 第十屆全國腐蝕大會摘要集. 南昌, 2019: 237
    [8] Zhao Y T. Song S Y, Yin X T, et al. Submarine structure sacrificial anode protector mold experiment and simulation calculation // Summary Collection of the 7th Marine Materials and Corrosion Protection Conference 2020 and the 1st Reinforced Concrete Durability and Facility Service Safety Conference 2020. Wuxi, 2020: 1

    趙永韜, 宋神友, 尹學濤, 等. 沉管鋼殼犧牲陽極保護數值模擬驗證和修正. 2020第七屆海洋材料與腐蝕防護大會暨2020第一屆鋼筋混凝土耐久性與設施服役安全大會摘要集. 無錫, 2020: 1
    [9] Niu X L, Chen C P. Research progress of corrosion protection of steel structure in marine engineering. Ship Eng, 2019, 41(4): 100 doi: 10.13788/j.cnki.cbgc.2019.04.18

    牛雪蓮, 陳昌平. 海洋工程鋼結構腐蝕防護的研究進展. 船舶工程, 2019, 41(4):100 doi: 10.13788/j.cnki.cbgc.2019.04.18
    [10] Cao C N. Natural Environment Corrosion of Materials in China. Beijing: Chemical Industry Press, 2005

    曹楚南. 中國材料的自然環境腐蝕. 北京: 化學工業出版社, 2005
    [11] Zhu X R, Wang X R. Corrosion and Protection of Metals in Marine Environment. Beijing: National Defense Industry Press, 1999

    朱相榮, 王相潤. 金屬材料的海洋腐蝕與防護. 北京: 國防工業出版社, 1999
    [12] Hou B R. Marine Corrosion and Protection. Beijing: Science Press, 1997

    侯保榮. 海洋腐蝕與防護. 北京: 科學出版社, 1997
    [13] Jin W X, Luo Y N, Song S Z. Marine erosion-corrosion detections of metal materials. J Chin Soc Corros Prot, 2008, 28(6): 337 doi: 10.3969/j.issn.1005-4537.2008.06.004

    金威賢, 雒婭楠, 宋詩哲. 金屬材料實海沖刷腐蝕檢測. 中國腐蝕與防護學報, 2008, 28(6):337 doi: 10.3969/j.issn.1005-4537.2008.06.004
    [14] Chen H L, Wei Y. Corrosion mechanism of a carbon steel in simulated humid atmospheres. Corros Sci Prot Technol, 2006, 18(4): 255 doi: 10.3969/j.issn.1002-6495.2006.04.006

    陳惠玲, 魏雨. 一種碳鋼在模擬潮濕環境中腐蝕機理的探討. 腐蝕科學與防護技術, 2006, 18(4):255 doi: 10.3969/j.issn.1002-6495.2006.04.006
    [15] Xiao K, Dong C F, Li X G, et al. Study on accelerated corrosion tests for carbon steels and weathering steels. Equip Environ Eng, 2007, 4(3): 5 doi: 10.3969/j.issn.1672-9242.2007.03.002

    肖葵, 董超芳, 李曉剛, 等. 碳鋼和耐候鋼加速腐蝕實驗研究. 裝備環境工程, 2007, 4(3):5 doi: 10.3969/j.issn.1672-9242.2007.03.002
    [16] Zhong W B. Development of steel plate for bridge and tunnel for Shenzhen-Zhongshan Bridge in Baosteel. Baosteel Technol, 2022(2): 65

    鐘武波. 寶鋼供深中通道橋隧用鋼板的開發. 寶鋼技術, 2022(2):65
    [17] Zhao H, Li Q, Zhang J. Study on low temperature welding technology of steel structure Q390C. J New Ind, 2020, 10(1): 80 doi: 10.19335/j.cnki.2095-6649.2020.01.018

    趙輝, 李強, 張佳. 鋼結構Q390C低溫焊接工藝研究. 新型工業化, 2020, 10(1):80 doi: 10.19335/j.cnki.2095-6649.2020.01.018
    [18] Lu Q K, Wang L W, Xin J C, et al. Corrosion evolution and stress corrosion cracking of E690 steel for marine construction in artificial seawater under potentiostatic anodic polarization. Constr Build Mater, 2020, 238: 117763 doi: 10.1016/j.conbuildmat.2019.117763
    [19] ASTM International, ASTM D1141–98(2021) Standard Practice for Preparation of Substitute Ocean Water. United States: ASTM International, 2021
    [20] Zhang H X, Zeng H B, Qiu R. Main influencing factors to accelerate low alloy steel corrosion in seawater by adding H2O2. Equip Environ Eng, 2012, 9(6): 47

    張慧霞, 曾華波, 邱日. 添加H2O2加速低合金鋼海水腐蝕的主要影響因素研究. 裝備環境工程, 2012, 9(6):47
    [21] Liu Z G, Gao X H, Du L X, et al. Corrosion behavior of armor layer steel of flexible pipes exposed to seawater environment. J Northeast Univ (Nat Sci), 2017, 38(8): 1088 doi: 10.12068/j.issn.1005-3026.2017.08.006

    劉珍光, 高秀華, 杜林秀, 等. 海洋軟管鎧裝層用鋼的海水腐蝕行為. 東北大學學報(自然科學版), 2017, 38(8):1088 doi: 10.12068/j.issn.1005-3026.2017.08.006
    [22] Metal Standardization Internet. GB/T16545–2015 Corrosion of Metals and Alloys-Removal of Corrosion Products from Corrosion Test Specimens. Beijing: Standards Press of China, 2015

    全國鋼標準化技術委員會. GB/T16545–2015金屬和合金的腐蝕 腐蝕試樣上腐蝕產物的清除. 北京: 中國標準出版社, 2015
    [23] Wang X, Xiao K, Cheng X Q, et al. Corrosion prediction model of Q235 steel in polluted marine atmospheric environment. J Mater Eng, 2017, 45(4): 51 doi: 10.11868/j.issn.1001-4381.2015.001414

    王旭, 肖葵, 程學群, 等. Q235鋼的污染海洋大氣環境腐蝕壽命預測模型. 材料工程, 2017, 45(4):51 doi: 10.11868/j.issn.1001-4381.2015.001414
    [24] Gu M B. An lnvesigation in corrosion of low-alloy steel in marine environment. Dev Appl Mater, 2012, 27(1): 40 doi: 10.3969/j.issn.1003-1545.2012.01.010

    谷美邦. 海洋環境下低合金鋼腐蝕行為研究. 材料開發與應用, 2012, 27(1):40 doi: 10.3969/j.issn.1003-1545.2012.01.010
    [25] Mao C L, Xiao K, Dong C F, et al. Corrosion behavior of extra deep drawing cold rolled sheet in stimulative ocean-atmosphere environment. J Chin Soc Corros Prot, 2017, 37(2): 101 doi: 10.11902/1005.4537.2016.202

    毛成亮, 肖葵, 董超芳, 等. 超深沖壓用冷軋板在模擬海洋大氣環境中的腐蝕行為. 中國腐蝕與防護學報, 2017, 37(2):101 doi: 10.11902/1005.4537.2016.202
    [26] Xu J W. Research on Key Corrosion Factors and Synergistic Mechanism of Q345 Steel in South China Sea [Dissertation]. Chongqing: Chongqing Jiaotong University, 2020

    徐靜雯. Q345鋼南海環境關鍵腐蝕因子及其協同作用機理研究[學位論文]. 重慶: 重慶交通大學, 2020
    [27] Ding G Q, Li X Y, Zhang B, et al. Variation of free corrosion potential of several metallic materials in natural seawater. J Chin Soc Corros Prot, 2019, 39(6): 543 doi: 10.11902/1005.4537.2019.233

    丁國清, 李向陽, 張波, 等. 金屬材料在天然海水中的腐蝕電位及其變化規律. 中國腐蝕與防護學報, 2019, 39(6):543 doi: 10.11902/1005.4537.2019.233
    [28] Su L L. Study on Corrosion Mechanism of Q235 Steel and Stainless Steel in Natural Seawater [Dissertation]. Jinan: Shandong University, 2010

    蘇璐璐. Q235鋼和不銹鋼海水腐蝕機理研究[學位論文]. 濟南: 山東大學, 2010
  • 加載中
圖(8) / 表(3)
計量
  • 文章訪問數:  336
  • HTML全文瀏覽量:  154
  • PDF下載量:  68
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-09-09
  • 網絡出版日期:  2022-12-12
  • 刊出日期:  2023-05-31

目錄

    /

    返回文章
    返回