<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

等跨等截面連續梁的解析計算公式

周毅 岳清瑞 潘旦光 蘭成明

周毅, 岳清瑞, 潘旦光, 蘭成明. 等跨等截面連續梁的解析計算公式[J]. 工程科學學報, 2023, 45(11): 1970-1976. doi: 10.13374/j.issn2095-9389.2022.08.31.002
引用本文: 周毅, 岳清瑞, 潘旦光, 蘭成明. 等跨等截面連續梁的解析計算公式[J]. 工程科學學報, 2023, 45(11): 1970-1976. doi: 10.13374/j.issn2095-9389.2022.08.31.002
ZHOU Yi, YUE Qingrui, PAN Danguang, LAN Chengming. Analytical formulas for prismatic continuous beams of equal spans[J]. Chinese Journal of Engineering, 2023, 45(11): 1970-1976. doi: 10.13374/j.issn2095-9389.2022.08.31.002
Citation: ZHOU Yi, YUE Qingrui, PAN Danguang, LAN Chengming. Analytical formulas for prismatic continuous beams of equal spans[J]. Chinese Journal of Engineering, 2023, 45(11): 1970-1976. doi: 10.13374/j.issn2095-9389.2022.08.31.002

等跨等截面連續梁的解析計算公式

doi: 10.13374/j.issn2095-9389.2022.08.31.002
基金項目: 國家自然科學基金資助項目(52192662); 佛山市科技創新專項資金資助項目(BK20BE008,BK21BE014)
詳細信息
    通訊作者:

    E-mail: zhouyi@ustb.edu.cn

  • 中圖分類號: TU378.2

Analytical formulas for prismatic continuous beams of equal spans

More Information
  • 摘要: 求解等跨等截面連續梁的變形和內力是土木工程領域的典型問題. 基于Euler–Bernoulli梁理論,利用位移法和輔助數列推導出任意跨數的等跨等截面連續梁梁端轉動剛度的解析表達式,進而得到連續梁支點轉角、彎矩在跨中集中荷載、滿跨均布荷載、豎向溫差作用下的通用計算公式. 研究表明:當跨數趨于無窮大時,等跨等截面連續梁的梁端轉動剛度上限值為單跨梁抗彎線剛度的 $ 2\sqrt{\text{3}} $ 倍. 不同跨數的等跨等截面連續梁可采用形式統一的解析公式計算支點轉角和彎矩,不同靜力荷載作用結果的區別僅由單跨梁的固端彎矩決定. 所得公式形式簡潔、通用性強、應用方便,能揭示跨數對連續梁力學特性的影響規律,亦可用于分析頂推施工導梁參數優化等實際工程問題.

     

  • 圖  1  n跨連續梁受到梁端彎矩作用的分析模型. (a) M0作用在最左端; (b) M0作用在最右端

    Figure  1.  Analytical model of an n-span continuous beam subjected to the beam-end moment: (a) M0 applied at the leftmost end; (b) M0 applied at the rightmost end

    圖  2  n跨連續梁在第u跨受到荷載作用的分析模型

    Figure  2.  Analytical model of an n-span continuous beam with the uth span subjected to arbitrary loads

    表  1  等跨等截面梁的計算公式

    Table  1.   Formulas for a prismatic continuous beam of equal spans

    Case No. Analytical model Rotation, $ {z_k} $ Moment, $ {M_k} $ Parameter, $ M_1^{{\text{fix}}} $
    1 Eq. 23 Eq. 24 $ M_1^{{\text{fix}}} = {{ - F{l_0}} \mathord{\left/ {\vphantom {{ - F{l_0}} 8}} \right. } 8} $
    2 $ M_1^{{\text{fix}}} = {{ - ql_0^2} \mathord{\left/ {\vphantom {{ - ql_0^2} {12}}} \right. } {12}} $
    3 $ M_1^{{\text{fix}}} = {{EI\alpha \cdot \Delta T} \mathord{\left/ {\vphantom {{EI\alpha \cdot \Delta T} h}} \right. } h} $
    4 Eq. 25 Eq. 26 $ M_1^{{\text{fix}}} = {{ - F{l_0}} \mathord{\left/ {\vphantom {{ - F{l_0}} 8}} \right. } 8} $
    5 $ M_1^{{\text{fix}}} = {{ - ql_0^2} \mathord{\left/ {\vphantom {{ - ql_0^2} {12}}} \right. } {12}} $
    6 $ M_1^{{\text{fix}}} = {{EI\alpha \cdot \Delta T} \mathord{\left/ {\vphantom {{EI\alpha \cdot \Delta T} h}} \right. } h} $
    Note: α and h are the linear expansion coefficient and the cross-sectional depth of the beam, respectively. The temperature changes in the top and bottom surfaces of the beam are denoted as t1 and t2, respectively.
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xu Y, Shen C Y, Shao G T, et al. Continuous Beam Bridges. 3rd Ed. Beijing: China Communications Press, 2022

    徐岳, 申成岳, 邵國濤, 等. 連續梁橋. 3版. 北京:人民交通出版社, 2022
    [2] Shao X D. Bridge Engineering. 5th Ed. Beijing: China Communications Press, 2019

    邵旭東. 橋梁工程. 5版. 北京:人民交通出版社, 2019
    [3] Zhang H J, Pan D G. Semi-analytic solution to dynamic characteristics of non-uniform continuous beams. J Univ Sci Technol Beijing, 2008, 30(6): 590 doi: 10.13374/j.issn1001-053x.2008.06.019

    張懷靜, 潘旦光. 變截面連續梁動力特性的半解析解法. 北京科技大學學報, 2008, 30(6):590 doi: 10.13374/j.issn1001-053x.2008.06.019
    [4] Li L K. Structural Mechanics (I). 6th Ed. Beijing: Higher Education Press, 2017

    李廉錕. 結構力學(上冊). 6版. 北京:高等教育出版社, 2017
    [5] Long Y Q, Bao S H, Yuan S. Structural Mechanics (I) Basic Course. 4th Ed. Beijing: Higher Education Press, 2018

    龍馭球, 包世華, 袁駟. 結構力學I——基礎教程. 4版. 北京:高等教育出版社, 2018
    [6] Hibbeler R C. Structural Analysis. 9th Ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2015
    [7] Leet K M, Uang C, Lanning J T, et al. Fundamentals of Structural Analysis. 5th Ed. New York: McGraw-Hill Education, 2018
    [8] Zuraski P D. Continuous-beam analysis for highway bridges. J Struct Eng, 1 991, 117(1): 80
    [9] Compiling Group for “Manual of Static Calculation of Building Structures”. Manual of Static Calculation of Building Structures. 2nd Ed. Beijing: China Architecture & Building Press, 1998

    建筑結構靜力計算手冊編寫組. 建筑結構靜力計算手冊. 2版. 北京:中國建筑工業出版社, 1998
    [10] Li Y C. Calculation of continuous beams with any number of spans. Bridge Constr, 1990, 20(4): 23

    李瀛滄. 任意多跨連續梁的計算. 橋梁建設, 1990, 20(4):23
    [11] Dowell R K. Closed-form moment solution for continuous beams and bridge structures. Eng Struct, 2009, 31(8): 1880 doi: 10.1016/j.engstruct.2009.03.012
    [12] Dowell R K, Johnson T P. Shear and bending flexibility in closed-form moment solutions for continuous beams and bridge structures. Eng Struct, 2011, 33(12): 3238 doi: 10.1016/j.engstruct.2011.08.016
    [13] Hosseini-Tabatabaei M R, Rezaiee-Pajand M, Mollaeinia M R. Bridge-type structures analysis using RMP concept considering shear and bending flexibility. Struct Eng Mech, 2020, 74(2): 189
    [14] Hosseini-Tabatabaei M R, Mollaeinia M R. Exact closed-form equations for internal forces functions of bridge-type structures. Struct Eng Mech, 2021, 80(2): 211
    [15] Rosignoli M. Bridge Launching. London: Thomas Telford, 2002
    [16] Zhou J X. Mechanical analysis for incrementally launched prismatic continuous beam bridges. Highway, 1994(11): 20

    周季湘. 等截面連續梁橋頂推施工的受力分析. 公路, 1994(11):20
    [17] Dong C W, Li C X. Method for determination of reasonable parameters of launching nose for continuous beam. J Highw Transp Res Dev, 2010, 27(9): 55 doi: 10.3969/j.issn.1002-0268.2010.09.010

    董創文, 李傳習. 連續梁頂推導梁合理參數的確定方法. 公路交通科技, 2010, 27(9):55 doi: 10.3969/j.issn.1002-0268.2010.09.010
    [18] Rosignoli M. Nose-deck interaction in launched prestressed concrete bridges. J Bridge Eng, 1998, 3(1): 21 doi: 10.1061/(ASCE)1084-0702(1998)3:1(21)
    [19] Wang W F, Lin J F, Ma W T. Optimum analysis of launching nose during incremental launching construction of bridge. Eng Mech, 2007, 24(2): 132 doi: 10.3969/j.issn.1000-4750.2007.02.023

    王衛鋒, 林俊鋒, 馬文田. 橋梁頂推施工導梁的優化分析. 工程力學, 2007, 24(2):132 doi: 10.3969/j.issn.1000-4750.2007.02.023
    [20] Ji W, Shao T Y, Yu H F. Optimizing double launching noses for incrementally launched equal-span continuous girder bridges. J Bridge Eng, 2021, 26(7): 06021006 doi: 10.1061/(ASCE)BE.1943-5592.0001746
    [21] Lee H W, Jang J Y. Simplified analysis formula for the interaction of the launching nose and the superstructure of ILM bridge. J Comput Struct Eng Inst Korea, 2012, 25(3): 245 doi: 10.7734/COSEIK.2012.25.3.245
    [22] Wang L. A new method for solving static problems and influence lines of beams, continuous beams and rigid frames. J Hunan Univ, 1983, 10(2): 58

    王磊. 梁、連續梁、剛架靜力及影響線的新解法. 湖南大學學報, 1983, 10(2):58
    [23] Sun X S, Zhang F C. Solving statically indeterminate continuous beams by “directly writing method”. J Shandong Univ Tech, 1999, 29(2): 197

    孫仙山, 張方春. “直寫法”求解靜不定連續梁. 山東工業大學學報, 1999, 29(2):197
    [24] Yu X J. Conversion method for calculation of statically indeterminate straight beams with uniform cross-section. Eng Mech, 2007, 24(S1): 66 doi: 10.3969/j.issn.1000-4750.2007.z1.008

    喻曉今. 求超靜定等直梁的置換法. 工程力學, 2007, 24(增刊1):66 doi: 10.3969/j.issn.1000-4750.2007.z1.008
    [25] Wu Y Y, Li Y S, Wei J W, et al. A subsection independently systematic integral method for solving problems of statically indeterminate beam. Eng Mech, 2013, 30(S1): 11 doi: 10.6052/j.issn.1000-4750.2012.04.S006

    吳艷艷, 李銀山, 魏劍偉, 等. 求解超靜定梁的分段獨立一體化積分法. 工程力學, 2013, 30(S1):11 doi: 10.6052/j.issn.1000-4750.2012.04.S006
    [26] Jiang C Z, Huang J Q, Tang Z H. Distributed transfer function method for multi span statically indeterminate beam. J Xiangnan Univ, 2018, 39(2): 29 doi: 10.3969/j.issn.1672-8173.2018.02.006

    蔣純志, 黃健全, 唐政華. 多跨超靜定梁的分布傳遞函數方法. 湘南學院學報, 2018, 39(2):29 doi: 10.3969/j.issn.1672-8173.2018.02.006
    [27] Wang Y J, Di J. A reasonable length ratio between side span and mid-span of continuous beams with uniform section. J Lanzhou Univ Nat Sci, 2016, 52(3): 320

    王亞軍, 狄謹. 等截面連續梁合理邊中跨跨徑比. 蘭州大學學報(自然科學版), 2016, 52(3):320
    [28] Ji W, Shao T Y. Optimization analysis of double launching noses during launching construction of multi-span continuous girder bridge. J Zhejiang Univ Eng Sci, 2021, 55(7): 1289

    冀偉, 邵天彥. 多跨連續梁橋頂推施工雙導梁的優化分析. 浙江大學學報(工學版), 2021, 55(7):1289
  • 加載中
圖(2) / 表(1)
計量
  • 文章訪問數:  162
  • HTML全文瀏覽量:  90
  • PDF下載量:  49
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-08-31
  • 網絡出版日期:  2023-08-02
  • 刊出日期:  2023-11-01

目錄

    /

    返回文章
    返回