Recent advances in P2-type Ni–Mn-based layered oxide cathodes for sodium-ion batteries
-
摘要: P2型Na0.67[Ni, Mn]O2材料由于較高的比容量、工作電壓以及較好的空氣穩定性成為最具前景的鈉離子電池正極材料之一。然而,高壓相變、Na+/空位有序排布以及由Mn3+引起的Jahn–Teller扭曲導致該類材料充放電過程中面臨結構失穩以及性能衰減的挑戰。本綜述從P2型Na0.67[Ni, Mn]O2材料的失效機制出發,系統闡述了該類材料的最新進展。最后,對其未來的發展方向進行了展望。本文將為P2-type Na0.67[Ni, Mn]O2材料的研發與商業化提供借鑒。Abstract: As concerns over environmental contamination and rapid consumption of fossil fuels continue to grow, it is important for energy storage technology to reduce the intermittency of clean and renewable energy sources. So far, lithium-ion batteries (LIBs), commercialized by SONY corporation in 1991, have been the most widely used rechargeable batteries for various energy storage devices. Due to the ever-increasing demand for lithium employment in mobile electronic devices and electric vehicles (EVs), the price of Li resources is rising year by year. It is well known that worthwhile lithium resources are only found in a few countries (mainly in South America). Recently, sodium-ion batteries (SIBs) have been regarded as promising alternatives to LIBs for future large-scale energy storage systems (ESSs) owing to their low cost, abundant reservoirs of Na resources and similar characteristics to LIBs. Developing high-performance cathode materials is crucial to realize the commercialization of the SIB technology. Sodium transition metal oxides (NaxTMO2), especially for Ni–Mn-based compounds, have received significant attention thanks to their high specific capacity and operating voltage. Normally, layered NaxTMO2 materials have two types of crystal structures: P2 and O3, according to the surrounding Na environment and the number of unique oxygen layers occupied within the lattice. Compared with the O3 phase, the P2-type structure has open diffusion channels for the transport of Na+ and relatively rare phase transitions, which make P2-type Na0.67[Ni, Mn]O2 (NNMO) one of the most promising cathodes for SIBs. However, NNMO materials generally suffer from irreversible P2–O2 phase transformations, Na+/vacancy ordering transitions and Jahn–Teller distortion of Mn(III)O6 octahedra, leading to structural deterioration and performance degradation during the charge and discharge processes. In detail, the P2–O2 phase transition inevitably causes significant lattice volume change (~20%) and even the formation of cracks, resulting in the stripping of active substances from the collector and serious capacity decay during cycling. The Na+/vacancy ordering in NNMO causes the multi-step two-phase reactions, which may increase the activation energy barrier for Na+ hops between adjacent prismatic sites, consequently hindering Na+ diffusion. Additionally, the lattice distortion and P2-P’2 phase transition induced by the Jahn–Teller effect also impede Na+ migration, leading to the sluggish kinetics of Na+ (de)intercalation. In this review, the recent progress on NNMO cathodes is summarized, including ion-doping, surface modification and composite structure. The comprehensive and integrated explanation of the structure–function–performance relationship of these optimized cathodes is further presented. Moreover, the existing challenges of NNMO and possible remedies are also discussed. It is expected that this review can provide new insights into the commercialization of NNMO for SIBs.
-
圖 2 (a) 總熒光產額(TFY)模式下Ni-L3邊以及擬合曲線[17]; (b) P2-Na2/3Mn2/3Ni1/3O2材料的非彈性散射共振光譜(mRIXS)圖像(關鍵的氧的氧化還原特征由紅色箭頭指出)[17]; (c)通過對(b)中的兩條虛線之間的區域進行積分提取出的非彈性散射共振光譜-超特定熒光產率(mRIXS-sPFY)光譜[17]; (d) mRIXS-sPFY光譜531 eV處峰面積[17]; (e) 通過對Ni、O氧化還原以及不可逆反應獨立量化來解析總電化學容量[17]; (f) P2-Na2/3Mn2/3Ni1/3O2電極的PDOS圖[9]
Figure 2. (a) Ni-L3 edge TFY (solid) and fitted curves[17]; (b) corresponding mRIXS images of Na2/3Ni1/3Mn2/3O2 electrode, the key oxygen redox features are indicated by the red arrows[17]; (c) mRIXS-sPEY spectra extracted from mRIXS by integrating the characteristic 523.7 eV emission energy range, as indicated by the two horizontal dashed lines in Fig.2 (b)[17]; (d) mRIXS-sPFY 531 eV peak areas[17]; (e) decipher the total electrochemical capacity by independent quantifications of Ni, Mn and O redox [17]; (f) PDOS of Na2/3Ni1/3Mn2/3O2 electrode[9]
圖 3 (a) P2相高壓相變示意圖[18]; (b)Na2/3Mn2/3Ni1/3O2材料首圈充放電過程中的晶體結構演變[19]; (c) Na2/3Mn2/3Ni1/3O2材料不同電壓區間內循環50周后SEM圖(從左至右依次為原始樣品、2~3.8 V、2.0~4.1 V、2.0~4.25 V、2.0~4.5 V)[20]
Figure 3. (a) Schematic of P2 phase in the high voltage region;[18] (b) Na2/3Mn2/3Ni1/3O2 phase transition in the initial charge/discharge process[19]; (c) SEM images of Na2/3Mn2/3Ni1/3O2 electrode after 50 cycles in different voltage ranges (From the left to right: pristine sample, 2.0–3.8 V, 2.0–4.1 V, 2.0–4.25 V, 2.0–4.5 V)[20]
圖 5 (a) Mn3+的八面體構型示意圖; (b) Mn3+的Jahn–Teller扭曲示意圖[23]; (c) Na0.62Ni1/4Mn3/4O2材料在1.5~4.5 V電壓區間內的原位XRD圖譜[24]
Figure 5. (a) Schematic of Mn3+ octahedral configuration; (b) schematic of Jahn–Teller distortion for Mn3+[23]; (c) in-situ XRD patterns of Na0.62Ni1/4Mn3/4O2 electrode during the charge/discharge processes in the voltage range of 1.5–4.5 V[24]
圖 6 (a) Mg2+進入Na0.70Ni0.40Mn0.60O2材料AM層起到支柱作用示意圖[29]; (b) P2-Na2/3Ni1/3Mn2/3O2和P2-Na2/3Ni1/3Mn1/3Ti1/3O2材料中Nae和Naf的能量差計算結果[22]; (c) P2相結構中Li+可以在TM層與AM層之間可逆遷移示意圖; (d) Na0.66IyNizMn1–y–zO2 (0.60 ≤ x ≤ 0.80, 0 ≤ y ≤ 0.17, 0.20 ≤ z ≤0.33)材料的比容量與循環穩定性性能對比[32]
Figure 6. (a) Schematic diagram of the pillar effect of Mg2+ for Na0.70Ni0.4Mn0.60O2 electrode[29]; (b) calculated energy difference between the Nae and Naf sites for P2-Na2/3Ni1/3Mn2/3O2 and P2-Na2/3Ni1/3Mn1/3Ti1/3O2 eletrodes[22]; (c) reversible migration of Li+ between the TM and AM layers in P2 phase; (d) comparison of capacity and cycle stability of Na0.66IyNizMn1–y–zO2 (0.60 ≤ x ≤ 0.80, 0 ≤ y ≤ 0.17, 0.20 ≤ z ≤0.33) substituted with different inert cations[32]
圖 7 (a) Cu2+摻雜作用機制[37]; (b) Co3+離子摻雜作用機制[39]; (c) Na+在Na2/3Ni1/3Mn2/3O2、Na2/3Mn1/3Co2/3O2以及Na2/3Mn1/2Ni1/6Co1/3O2材料內的分布狀態[40]
Figure 7. (a) Mechanisms of Cu-doping[37]; (b) mechanisms of Co-doping[39]; (c) distribution of Na+ in Na2/3Ni1/3Mn2/3O2, Na2/3Mn1/3Co2/3O2, and Na2/3Mn1/2Ni1/6Co1/3O2 electrodes[40]
圖 8 (a) Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2在5C電流密度下的長循環穩定性[41]; (b) [Na0.67Zn0.05]Ni0.18Cu0.1Mn0.67O2材料的在[–220]方向的ABF-STEM圖; (c) [Na0.67Zn0.05]Ni0.18Cu0.1Mn0.67O2材料在10 C的電流密度下的長循環穩定性[42]; (d) P2-Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2材料在2.0~4.3 V的電壓區間內不同循環圈數的放電dQ/dV曲線; (e) P2-Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2材料在2.0~4.0 V的電壓區間內不同循環圈數的放電dQ/dV曲線; (f) P2-Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2材料在2.0~4.3 V的電壓區間內循環1周、10周、20周、30周以及50周后Mn的K邊吸收光譜[43]
Figure 8. (a) Long-term cycling stability of Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 electrode at 5C[41]; (b) ABF-STEM image of [Na0.67Zn0.05]Ni0.18Cu0.1Mn0.67O2 electrode viewed from [–220] axis; (c) long-term cycling stability of [Na0.67Zn0.05]Ni0.18Cu0.1Mn0.67O2 electrode at 10C[42]; (d) discharge dQ/dV curves within 2.0–4.3 V for P2-Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2 electrode; (e) discharge dQ/dV curves within 2.0–4.0 V for P2-Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2 electrode; (f) Mn K-edge XAS results collected at the 2 V discharged state after the 1st, 10th, 20th, 30th, and 50th cycles within 2.0–4.3 V for P2-Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2 electrode[43]
圖 10 (a) Ca2+和空位摻雜的Na0.66Ni0.33Mn0.67O2電極晶體結構示意圖; (b) P2-Na0.76Ca0.05[Ni0.23□0.08Mn0.69]O2正極在不同電流密度下的循環穩定性[46]
Figure 10. (a) Schematic of the crystal structure of Ca2+ and vacancy co-doped Na0.66Ni0.33Mn0.67O2 electrode; (b) cycling stability of P2-Na0.76Ca0.05[Ni0.23□0.08Mn0.69]O2 cathode at different current densities[46]
圖 11 (a)采用熔體–浸漬工藝在Na2/3[Ni1/3Mn2/3]O2材料表面構筑NaPO3包覆層示意圖[49]; (b) Na0.66Ni0.26Zn0.07Mn0.67O2(NNZM)和Na0.66Ni0.26Zn0.07Mn0.67O2/0.06ZnO (NNZM/0.06ZnO)電極表面CEI膜對比示意圖;(c)NNZM和NNZM/0.06ZnO在100 mA·g–1的電流密度下的循環性能[52]
Figure 11. (a) Schematic of melt–impregnation of NaPO3 coating on Na2/3[Ni1/3Mn2/3]O2[49]; (b) schematic of the CEI films formed on the Na0.66Ni0.26Zn0.07Mn0.67O2(NNZM) and Na0.66Ni0.26Zn0.07Mn0.67O2/0.06ZnO (NNZM/0.06ZnO) particles; (c) cycling performance of NNZM and NNZM/0.06ZnO at 100 mA·g–1[52]
圖 12 (a) P2-Na2/3Ni1/3Mn0.57Ti0.1O2、(b) O3-NaNi1/3Fe1/3Mn1/3O2以及(c) P2/O3-Na0.754Ni0.326Mn0.501Fe0.098Ti0.07O2材料在鈉離子脫嵌過程中的晶體結構變化示意圖[53]; (d) P2-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ,O3-Na0.8Ni0.2Cu0.1Fe0.2Mn0.5O2–δ以及P2/O3-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ電極在2.0~4.05 V電壓區間內的倍率性能; (e) P2-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ,O3-Na0.8Ni0.2Cu0.1Fe0.2Mn0.5O2–δ以及P2/O3-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ電極在2.0~4.05 V電壓區間內及240 mA·g–1下的循環穩定性[54]
Figure 12. Schematic of structural changes of (a) P2-Na2/3Ni1/3Mn0.57Ti0.1O2, (b) O3-NaNi1/3Fe1/3Mn1/3O2 and (c) P2/O3-Na0.754Ni0.326Mn0.501Fe0.098Ti0.07O2 during Na (de)sodiation[53]; (d) rate capabilities of P2-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ, O3-Na0.8Ni0.2Cu0.1Fe0.2Mn0.5O2–δ and P2/O3-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ electrode tested within 2.0–4.05 V, (e) cycling performances of P2-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ, O3-Na0.8Ni0.2Cu0.1Fe0.2Mn0.5O2–δ and P2/O3-Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2–δ electrode tested at a rate of 240 mA·g–1 within 2.0–4.05 V[54]
表 1 不同元素摻雜對P2-Na0.67[Ni, Mn]O2材料性能提升對比
Table 1. Comparison of performance of P2-Na0.67[Ni, Mn]O2 materials improved by doping different elements
Materials Initial capacity/(mA·h·g–1) Rate performance/
(mA·h·g–1)Cycle performance/(mA·h·g–1) References Na2/3Ni1/3Mn2/3O2 167 (12 mA·g–1) (2.0–4.4 V) 30 (2C) 167 (12 mA·g–1) 30% (100 cycles) [7] Na0.62Ni1/4Mn3/4O2 185 (15 mA·g–1) (1.5–4.3 V) 120(500 mA·g–1) 185 (15 mA·g–1) 84% (50 cycles) [24] Na0.67Mn0.67Ni0.28Mg0.05O2 123 (0.1C) (2.5–4.35 V) — 123 (0.1C) 85% (50 cycles) [27] Na0.67Mg0.05[Mn0.60Ni0.20Mg0.15]O2 130 (0.2C) (1.5–4.2 V)78 (1C) (2.5–4.2 V) 57 (25C) 78 (1C) 79% (1000 cycles)130 (0.2C) 73% (180 cycles) [29] Na0.67Ni0.23Mn0.67Mg0.1O2 117 (0.1C) (2.5–4.4 V) 60 (5C) 117 (0.1C) 95.3%(50 cycles)70 (5C) 90.9% (1000 cycles) [30] Na2/3Ni1/3Mn1/2Ti1/6O2 127 (12.1 mA·g–1) (2.5–4.5 V) 90 (2C) 127 (12.1 mA·g–1 ) 90.5% (20 cycles) [31] Na2/3Ni1/3Mn1/3Ti1/3O2 90 (0.1C) (2.5–4.15 V) 70 (20C) 87 (1 C) 83.9% (500 cycles) [22] Na0.80Li0.12Ni0.22Mn0.66O2 118 (0.1C) (2.0–4.4 V) 70.8 (5C) 118 (0.1C) 91% (50 cycles) [33] Na0.67Mn0.6Ni0.2Li0.2O2 100 (0.1C) (2.0–4.6 V) 70 (2C) 110 (0.1C) 102% (100 cycles) [34] Na0.66Ni0.26Mn0.67Zn0.07O2 127 (12 mA·g–1) (2.2–4.3 V) — 127 (12 mA·g–1) 93.1% (10 cycles) [13] Na0.6Ni0.22Al0.11Mn0.66O2 252 (20 mA·g–1)(1.5–4.6 V) 140 (5 C) 252 (20 mA·g–1) 80% (50 cycles) [32] Na0.67Ni0.1Cu0.2Mn0.7O2 120 (0.1C) (2.0–4.5 V) 55 (20C) 120 (0.1C) 67% (100 cycles) [37] Na0.7Mn0.7Ni0.2Co0.1O2 160 (50 mA·g–1) (1.5–4.0 V) 75 (500 mA·g–1) 100 (1 A·g–1) 87% (300 cycles) [39] Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 87.9 (0.5C) (2.5–4.15 V) 60 (30C) 80 (5C) 81.4% (500 cycles) [41] [Na0.67Zn0.05]Ni0.18Cu0.1Mn0.67O2 100 (0.1C) (2.5–4.4 V) 60 (10C) 60 (10C) 80.6% (2000 cycles) [42] Na0.75Ca0.04[Li0.1Ni0.2Mn0.67]O2 130 (0.1 V) (2.0–4.3 V) 68.8 (20C) 80 (10C) 87.7% (500 cycles) [43] Na0.62Mn0.67Ni0.23Cu0.05Mg0.03Ti0.06O2 148.2 (0.1C) (2.0–4.3 V) 80 (10C) 120 (1C) 87% (500 cycles)78.6 (10C) 75% (2000 cycles) [44] Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 135 (0.1C) (2.2–4.4 V) 110 (4C) 116.8 (2C) 82% (200 cycles) [45] Na0.76Ca0.05[Ni0.23□0.08Mn0.69]O2 153.9 (0.1C) (2.0–4.3 V) 74.6 (20C) 95 (5C) 75.3% (200 cycles) [46] www.77susu.com -
參考文獻
[1] Liu Y K, Li J, Shen Q Y, et al. Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials. eScience, 2022, 2(1): 10 doi: 10.1016/j.esci.2021.12.008 [2] Hou Y N, Li X F, Liu W, et al. ALD derived Fe3+- doping toward high performance P2-Na0.75Ni0. 2Co0. 2Mn0. 6O2 cathode material for sodium ion batteries. Mater Today Energy, 2019, 14: 100353 doi: 10.1016/j.mtener.2019.100353 [3] Liu Z J, Zheng F F, Xiong W W, et al. Strategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries. SmartMat, 2021, 2(4): 488 doi: 10.1002/smm2.1064 [4] Niu Y B, Yin Y X, Wang W P, et al. In situ copolymerizated gel polymer electrolyte with cross-linked network for sodium-ion batteries. CCS Chem, 2020, 2(1): 589 doi: 10.31635/ccschem.019.201900055 [5] Xu L, Li H, Du T, et al. An all Prussian blue analog-based aprotic sodium-ion battery. Battery Energy, 2022, 1(2): 20210003 doi: 10.1002/bte2.20210003 [6] Chu S Y, Guo S H, Zhou H S. Advanced cobalt-free cathode materials for sodium-ion batteries. Chem Soc Rev, 2021, 50(23): 13189 doi: 10.1039/D1CS00442E [7] Zuo W H, Qiu J M, Liu X S, et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nat Commun, 2020, 11(1): 3544 doi: 10.1038/s41467-020-17290-6 [8] Wang W H, Zhang J L, Li C L, et al. P2-Na2/3Ni2/3Te1/3O2 cathode for Na-ion batteries with high voltage and excellent stability. Energy & Environ Materials, https://doi.org/10.1002/eem2.12314 [9] Zuo W H, Ren F C, Li Q H, et al. Insights of the anionic redox in P2-Na0.67Ni0. 33Mn0. 67O2. Nano Energy, 2020, 78: 105285 doi: 10.1016/j.nanoen.2020.105285 [10] Paulsen J M, Dahn J R. O2-type Li2/3[Ni1/3Mn2/3]O2: A new layered cathode material for rechargeable lithium batteries II. structure,composition,and properties. J Electrochem Soc, 2000, 147(7): 2478 [11] Paulsen J M, Thomas C L, Dahn J R. O2 Structure Li2/3[Ni1/3Mn2/3]O2: A new layered cathode material for rechargeable lithium batteries. I. Electrochemical properties. J Electrochem Soc, 2000, 147(3): 861 doi: 10.1149/1.1393283 [12] Liu Q N, Hu Z, Chen M Z, et al. P2-type Na2/3Ni1/3Mn2/3O2 as a cathode material with high-rate and long-life for sodium ion storage. J Mater Chem A, 2019, 7(15): 9215 doi: 10.1039/C8TA11927A [13] Wu X H, Xu G L, Zhong G M, et al. Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries. ACS Appl Mater Interfaces, 2016, 8(34): 22227 doi: 10.1021/acsami.6b06701 [14] Armstrong A R, Holzapfel M, Novák P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc, 2006, 128(26): 8694 doi: 10.1021/ja062027+ [15] Maitra U, House R A, Somerville J W, et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat Chem, 2018, 10(3): 288 doi: 10.1038/nchem.2923 [16] Zuo W H, Qiu J M, Liu X S, et al. Highly-stable P2-Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering. Energy Storage Mater, 2020, 26: 503 doi: 10.1016/j.ensm.2019.11.024 [17] Dai K H, Mao J, Zhuo Z Q, et al. Negligible voltage hysteresis with strong anionic redox in conventional battery electrode. Nano Energy, 2020, 74: 104831 doi: 10.1016/j.nanoen.2020.104831 [18] Kubota K, Kumakura S, Yoda Y, et al. Electrochemistry and solid-state chemistry of NaMeO2 (Me=3d transition metals). Adv Energy Mater, 2018, 8(17): 1703415 doi: 10.1002/aenm.201703415 [19] Lu Z H, Dahn J R. In situ X-Ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J Electrochem Soc, 2001, 148(11): A1225 doi: 10.1149/1.1407247 [20] Wang K, Yan P F, Sui M L. Phase transition induced cracking plaguing layered cathode for sodium-ion battery. Nano Energy, 2018, 54: 148 doi: 10.1016/j.nanoen.2018.09.073 [21] Lee D H, Xu J, Meng Y S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys, 2013, 15(9): 3304 doi: 10.1039/c2cp44467d [22] Wang P F, Yao H R, Liu X Y, et al. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci Adv, 2018, 4(3): eaar6018 doi: 10.1126/sciadv.aar6018 [23] Ortiz-Vitoriano N, Drewett N E, Gonzalo E, et al. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries. Energy Environ Sci, 2017, 10(5): 1051 doi: 10.1039/C7EE00566K [24] Gutierrez A, Dose W M, Borkiewicz O, et al. On disrupting the Na+-ion/vacancy ordering in P2-type sodium-manganese-nickel oxide cathodes for Na+-ion batteries. J Phys Chem C, 2018, 122(41): 23251 doi: 10.1021/acs.jpcc.8b05537 [25] Wang C C, Liu L J, Zhao S, et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat Commun, 2021, 12(1): 2256 doi: 10.1038/s41467-021-22523-3 [26] Liu X S, Zuo W H, Zheng B Z, et al. P2-Na0.67Alx Mn1–xO2:Cost-effective, stable and high-rate sodium electrodes by suppressing phase transitions and enhancing sodium cation mobility. Angew Chem Int Ed, 2019, 58(50): 18086 doi: 10.1002/anie.201911698 [27] Wang P F, You Y, Yin Y X, et al. Suppressing the P2–O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed Engl, 2016, 55(26): 7445 doi: 10.1002/anie.201602202 [28] Wang K, Wan H, Yan P F, et al. Dopant segregation boosting high-voltage cyclability of layered cathode for sodium ion batteries. Adv Mater, 2019, 31(46): e1904816 doi: 10.1002/adma.201904816 [29] Wang Q C, Meng J K, Yue X Y, et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J Am Chem Soc, 2019, 141(2): 840 doi: 10.1021/jacs.8b08638 [30] Peng B, Sun Z H, Zhao L P, et al. Dual-manipulation on P2-Na0.67Ni0. 33Mn0. 67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3. 5 V. Energy Storage Mater, 2021, 35: 620 doi: 10.1016/j.ensm.2020.11.037 [31] Yoshida H, Yabuuchi N, Kubota K, et al. P2-type Na2/3Ni1/3Mn2/3–xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chem Commun, 2014, 50(28): 3677 doi: 10.1039/C3CC49856E [32] Zhang J L, Wang W H, Wang W, et al. Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries. ACS Appl Mater Interfaces, 2019, 11(25): 22051 doi: 10.1021/acsami.9b03937 [33] Xu J, Lee D H, Clément R J, et al. Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1–y–z]O2 (0<x, y, z<1) intercalation cathode materials for high-energy Na-ion batteries. Chem Mater, 2014, 26(2): 1260 doi: 10.1021/cm403855t [34] Yang L T, Kuo L Y, López del Amo J M, et al. Structural aspects of P2-type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) stabilization by lithium defects as a cathode material for sodium-ion batteries. Adv Funct Mater, 2021, 31(38): 2102939 doi: 10.1002/adfm.202102939 [35] Hasa I, Passerini S, Hassoun J. Toward high energy density cathode materials for sodium-ion batteries: Investigating the beneficial effect of aluminum doping on the P2-type structure. J Mater Chem A, 2017, 5(9): 4467 doi: 10.1039/C6TA08667E [36] Yang L, Luo S H, Wang Y F, et al. Cu-doped layered P2-type Na0.67Ni0.33–xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries. Chem Eng J, 2021, 404: 126578 doi: 10.1016/j.cej.2020.126578 [37] Zheng L T, Li J R, Obrovac M N. Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3–xCuxMn2/3O2 in sodium cells. Chem Mater, 2017, 29(4): 1623 doi: 10.1021/acs.chemmater.6b04769 [38] Wang L, Sun Y G, Hu L L, et al. Copper-substituted Na0.67Ni0.3?xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. J Mater Chem A, 2017, 5(18): 8752 doi: 10.1039/C7TA00880E [39] Li Z Y, Zhang J C, Gao R, et al. Unveiling the role of Co in improving the high-rate capability and cycling performance of layered Na0.7Mn0.7Ni0.3–xCoxO2 cathode materials for sodium-ion batteries. ACS Appl Mater Interfaces, 2016, 8(24): 15439 doi: 10.1021/acsami.6b04073 [40] Liu Z B, Shen J D, Feng S H, et al. Ultralow volume change of P2-type layered oxide cathode for Na-ion batteries with controlled phase transition by regulating distribution of Na. Angew Chem Int Ed, 2021, 60(38): 20960 doi: 10.1002/anie.202108109 [41] Xiao Y, Zhu Y F, Yao H R, et al. A stable layered oxide cathode material for high-performance sodium-ion battery. Adv Energy Mater, 2019, 9(19): 1803978 doi: 10.1002/aenm.201803978 [42] Peng B, Chen Y X, Wang F, et al. Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Adv Mater, 2022, 34(6): e2103210 doi: 10.1002/adma.202103210 [43] Jin J T, Liu Y C, Shen Q Y, et al. Unveiling the complementary manganese and oxygen redox chemistry for stabilizing the sodium-ion storage behaviors of layered oxide cathodes. Adv Funct Mater, 2022, 32(29): 2203424 doi: 10.1002/adfm.202203424 [44] Fu F, Liu X, Fu X G, et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat Commun, 2022, 13: 2826 doi: 10.1038/s41467-022-30113-0 [45] Cheng Z W, Zhao B, Guo Y J, et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv Energy Mater, 2022, 12(14): 2103461 doi: 10.1002/aenm.202103461 [46] Shen Q Y, Liu Y C, Zhao X D, et al. Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry. Adv Funct Mater, 2021, 31(51): 2106923 doi: 10.1002/adfm.202106923 [47] Mu L Q, Rahman M M, Zhang Y, et al. Surface transformation by a “cocktail” solvent enables stable cathode materials for sodium ion batteries. J Mater Chem A, 2018, 6(6): 2758 doi: 10.1039/C7TA08410B [48] Dang R B, Li Q, Chen M M, et al. CuO-Coated and Cu2+-doped Co-modified P2-type Na2/3[Ni1/3Mn2/3]O2 for sodium-ion batteries. Phys Chem Chem Phys, 2019, 21(1): 314 doi: 10.1039/C8CP06248J [49] Jo J H, Choi J U, Konarov A, et al. Sodium-ion batteries: Building effective layered cathode materials with long-term cycling by modifying the surface via sodium phosphate. Adv Funct Mater, 2018, 28(14): 1705968 doi: 10.1002/adfm.201705968 [50] Xu K, Yan M M, Chang Y X, et al. Surface optimized P2-Na2/3Ni1/3Mn2/3O2 cathode material via conductive Al-doped ZnO for boosting sodium storage. Electrochimica Acta, 2022, 419: 140394 doi: 10.1016/j.electacta.2022.140394 [51] Xue L, Bao S, Yan L, et al. MgO-coated layered cathode oxide with enhanced stability for sodium-ion batteries. Front Energy Res, 2022, 10: 847818 doi: 10.3389/fenrg.2022.847818 [52] Zhang F P, Liao J H, Xu L, et al. Stabilizing P2-type Ni–Mn oxides as high-voltage cathodes by a doping-integrated coating strategy based on zinc for sodium-ion batteries. ACS Appl Mater Interfaces, 2021, 13(34): 40695 doi: 10.1021/acsami.1c12062 [53] Cheng Z W, Fan X Y, Yu L Z, et al. A rational biphasic tailoring strategy enabling high-performance layered cathodes for sodium-ion batteries. Angew Chem Int Ed, 2022, 61(19): e202117728 [54] Gao X, Liu H Q, Chen H Y, et al. Cationic-potential tuned biphasic layered cathodes for stable desodiation/sodiation. Sci Bull, 2022, 67(15): 1589 doi: 10.1016/j.scib.2022.06.024 -