Evolution, key technology, prospects, and applications of industrial network architecture
-
摘要: 基于工業互聯網應具備的特征,結合現有工業互聯網總體現狀,分析總結傳統工業自動化封閉式五層架構存在的問題。首先,提出支持數據高效流轉的云、邊端新型工業網絡協同架構,架構的變革對現有技術提出挑戰,同時也為傳統自動化系統提供了新的機遇。其次,在總體架構的基礎上,提出適配新型工業網絡基礎架構的兩項關鍵技術。5G–時間敏感網絡(Time-sensitive networking, TSN)協同傳輸技術,包括5G–TSN異構網絡融合架構、網絡時鐘適配機制以及基于軟件定義網絡(Software defined network,SDN)的融合管控和資源調度三部分技術內容;基于確定性網絡的云化可編程邏輯控制器(Programmable logic controller,PLC)技術包括工業控制虛擬化和5G云化工業控制技術兩部分技術內容。基于此,提出自主設計面向實時運動控制的5G云化PLC與EtherCAT融合系統,以及面向實時運動控制的EtherCAT與TSN融合系統試驗平臺,并驗證了新型工業網絡架構的科學性和合理性。最后,對未來網絡、控制、計算一體化工業自動化系統中的高效性、可靠性和安全性之間的融合問題及潛在解決方案進行了探討。Abstract: Based on a summary of the characteristics of the industrial Internet, combined with the overall status of the existing industrial Internet, this paper analyzes the problems of the traditional industrial automation closed five-tier architecture and concludes that the current industrial Internet remains in a stage of technological development and maturation, which restricts the promotion and standardization of China’s intelligent manufacturing level to some extent. In the future, the industrial Internet will break the original data hierarchy structure, break the data barrier, and realize the development of intelligent manufacturing toward intelligent, flattening, lightweight, and green. First, this paper proposes a new industrial network collaboration architecture on the cloud side that supports efficient data flow. The proposed architecture is a flat, platform-based structure that realizes cloud-side collaboration and the integration of control, computing power, and network. Second, on the basis of the overall architecture of the industrial network, two key technologies are proposed to adapt the new industrial network infrastructure. One is 5G–time-sensitive networking (TSN) collaborative transmission technology. TSN realizes the interconnection and integration of heterogeneous networks in the industrial field based on the data link layer, and 5G–TSN collaborative transmission has become an important evolution trend of the intelligent factory network. Three key technical contents are introduced: 5G–TSN heterogeneous network convergence architecture, network clock adaptation mechanism, and software defined network (SDN)-based integration management and resource scheduling. The other key technology is cloud PLC technology based on a deterministic network, and the virtualization and cloud control system is the basis for breaking the original closed industrial control system. On the one hand, cloud-based hardware resources can be used to achieve one-to-many control, saving a large amount of industrial control equipment deployment investment costs. More importantly, the centralized control system can achieve unified control and optimization of global resources. This paper introduces the virtualization 5G cloud chemical industry control technology with two parts: technical content and technical route. Third, this paper proposes a cloud-based allocation of control resources and a cloud–network integration collaboration scenario and designs the 5G cloud-based programmable logic controller (PLC) and EtherCAT fusion system and the EtherCAT and TSN fusion system for real-time motion control. Through the testing of the end-to-end delay and cross-network time synchronization accuracy of the actual system, the current end-to-end delay of network transmission is less than 5 ms, the cross-network time synchronization error is between 100–400 us, and the accuracy is less than 100 ns These performance indicators reach the current industry-leading level. The test platform verifies the scientificalness and rationality of the new industrial network architecture. Finally, the integration problems and potential solutions of efficiency, reliability, and security are discussed in the future industrial automation system integrating network, control, and computing.
-
圖 4 5G–TSN端到端網絡架構[27]
Figure 4. 5G–TSN end-to-end network architecture[27]
Notes: AF represents application function; AMF represents access management function; CNC represents centralized network configuration; CUC represents centralized user configuration; DS–TT represents TSN converter at terminal side; GM represents master clock; NEF represents network open function; NW–TT represents network side TSN converter; PCF represents policy control function; RAN represents wireless access network; SMF represents session management function; TSN represents time sensitive network; UDM represents unified data management; UE represents user equipment; UPF represents user plane function
圖 11 多天車協同控制系統原型試驗床構建及驗證. (a) 多天車協同控制系統原型試驗床; (b) 5G云化PLC與EtherCAT融合系統指令端到端傳輸測試結果
Figure 11. Construction and verification of the prototype testbed for multi-crown block collaborative system: (a) prototype testbed for the multi-crown block collaborative control system; (b) end-to-end test results of 5G cloud PLC and EtherCAT integration system commands
www.77susu.com -
參考文獻
[1] Qi J, Wang W, Chen M X, et al. Concept, architecture and key technologies of industrial internet. Chin J Internet Things, 2022, 6(2): 38亓晉, 王微, 陳孟璽, 等. 工業互聯網的概念、體系架構及關鍵技術. 物聯網學報, 2022, 6(2):38 [2] Jagatheesaperumal S K, Rahouti M, Ahmad K, et al. The Duo of artificial intelligence and big data for industry 4.0: Applications, techniques, challenges, and future research directions. IEEE Internet Things J, 2022, 9(15): 12861 [3] Javaid M, Haleem A, Singh R P, et al. Artificial intelligence applications for industry 4.0: A literature-based study. J Ind Intg Mgmt, 2022, 7(1): 83 doi: 10.1142/S2424862221300040 [4] Yuan C X, Li G Y, Kamarthi S, et al. Trends in intelligent manufacturing research: A keyword co-occurrence network based review. J Intell Manuf, 2022, 33(2): 425 doi: 10.1007/s10845-021-01885-x [5] Wan J F, Tang S L, Shu Z G, et al. Software-defined industrial Internet of Things in the context of industry 4.0. IEEE Sens J, 2016, 16(20): 7373 [6] Ma N F, Yao X F, Wang K S. Current status and prospect of future internet-oriented wisdom manufacturing. Sci Sin (Technol), 2022, 52(1): 55 doi: 10.1360/SST-2021-0232馬南峰, 姚錫凡, 王柯賽. 面向未來互聯網的智慧制造研究現狀與展望. 中國科學:技術科學, 2022, 52(1):55 doi: 10.1360/SST-2021-0232 [7] Wollschlaeger M, Sauter T, Jasperneite J. The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Ind Electron Mag, 2017, 11(1): 17 doi: 10.1109/MIE.2017.2649104 [8] Pop P, Zarrin B, Barzegaran M, et al. The FORA fog computing platform for industrial IoT. Inf Syst, 2021, 98: 101727 doi: 10.1016/j.is.2021.101727 [9] Sun L, Wang J Q, Lin S J, et al. Research on 5G–TSN joint scheduling mechanism based on radio channel information. J Commun, 2021, 42(12): 65孫雷, 王健全, 林尚靜, 等. 基于無線信道信息的5G與TSN聯合調度機制研究. 通信學報, 2021, 42(12):65 [10] Liu Q, Shao X, Yang J P, et al. Multiscale modeling and collaborative manufacturing for steelmaking plants. Chin J Eng, 2021, 43(12): 1698劉青, 邵鑫, 楊建平, 等. 煉鋼廠多尺度建模與協同制造. 工程科學學報, 2021, 43(12):1698 [11] Zhang L. Application of 5G network in iron and steel industry equipment data fast access platform. Metall Ind Autom, 2021, 45(4): 1 doi: 10.3969/j.issn.1000-7059.2021.04.001張麗. 5G網絡在鋼鐵行業設備數據快速接入平臺中的應用. 冶金自動化, 2021, 45(4):1 doi: 10.3969/j.issn.1000-7059.2021.04.001 [12] Alonzo M, Baracca P, Khosravirad S R, et al. Cell-free and user-centric massive MIMO architectures for reliable communications in indoor factory environments. IEEE Open J Commun Soc, 2021, 2: 1390 doi: 10.1109/OJCOMS.2021.3089281 [13] Briglauer W, Stocker V, Whalley J. Public policy targets in EU broadband markets: The role of technological neutrality. Telecommun Policy, 2020, 44(5): 101908 doi: 10.1016/j.telpol.2019.101908 [14] Zhu P K, Yoshida Y, Kanno A, et al. High-fidelity indoor MIMO radio access for 5G and beyond based on legacy multimode fiber and real-time analog-to-digital-compression. Opt Express, 2021, 29(2): 1945 doi: 10.1364/OE.411144 [15] Li B H, Chai X D, Liu Y, et al. Intelligent manufacturing enabled by information and communication technology in industrial environment. Strateg Study CAE, 2022, 24(2): 75李伯虎, 柴旭東, 劉陽, 等. 工業環境下信息通信類技術賦能智能制造研究. 中國工程科學, 2022, 24(2):75 [16] Tian H, He S, Lin S J, et al. Survey on cooperative fusion technologies with perception, communication and control coupled in industrial Internet. J Commun, 2021, 42(10): 211田輝, 賀碩, 林尚靜, 等. 工業互聯網感知通信控制協同融合技術研究綜述. 通信學報, 2021, 42(10):211 [17] Ren L, Jia Z Z, Lai L Y J, et al. Data-driven industrial intelligence: Current status and future directions. Comput Integr Manuf Syst, 2022, 28(7): 1913任磊, 賈子翟, 賴李媛君, 等. 數據驅動的工業智能: 現狀與展望. 計算機集成制造系統, 2022, 28(7):1913 [18] Cai Y P, Yao Z C, Li T C. A survey on time-sensitive networking: Standards and state-of-the-art. Chin J Comput, 2021, 44(7): 1378 doi: 10.11897/SP.J.1016.2020.01378蔡岳平, 姚宗辰, 李天馳. 時間敏感網絡標準與研究綜述. 計算機學報, 2021, 44(7):1378 doi: 10.11897/SP.J.1016.2020.01378 [19] Chai T Y, Liu Q, Ding J L, et al. Perspectives on industrial-internet-driven intelligent optimized manufacturing mode for process industries. Sci Sin (Technol), 2022, 52(1): 14 doi: 10.1360/SST-2021-0405柴天佑, 劉強, 丁進良, 等. 工業互聯網驅動的流程工業智能優化制造新模式研究展望. 中國科學:技術科學, 2022, 52(1):14 doi: 10.1360/SST-2021-0405 [20] An M Y, Wang X Y. Boosting the high-quality development of China’s steel industry with intelligent manufacturing. Metall Economy Manag, 2022(2): 30安夢越, 王興艷. 以智能制造助力中國鋼鐵行業高質量發展. 冶金經濟與管理, 2022(2):30 [21] Zhang B, Wang F Z, Xu L Q. Brief analysis on the current situation and demand of standardization of industrial Internet platform in China. China Qual Stand Rev, 2022(1): 59張斌, 王法中, 許立前. 我國工業互聯網平臺標準化現狀及需求淺析. 中國質量與標準導報, 2022(1):59 [22] Zang J Y, Liu Y F, Wang B C, et al. Technology forecasting and roadmapping of intelligent manufacturing by 2035. J Mech Eng, 2022, 58(4): 285臧冀原, 劉宇飛, 王柏村, 等. 面向2035的智能制造技術預見和路線圖研究. 機械工程學報, 2022, 58(4):285 [23] Industrial Internet Industry Alliance. Industrial internet architecture (2.0) [R/OL]. Report Online (2020-04) [2022-08-01]. http://www.aii-alliance.org/upload/202004/0430_162140_875.pdf工業互聯網產業聯盟. 工業互聯網體系架構(版本2.0)[R/OL]. 在線報告(2020-04) [2022-08-01]. http://www.aii-alliance.org/upload/202004/0430_162140_875.pdf [24] Industrial Internet Industry Alliance. Industrial intelligence white paper [R/OL]. Report Online (2020-04) [2022-08-01]. https://tech.sina.com.cn/roll/2020-07-06/doc-iircuyvk2170592.shtml工業互聯網產業聯盟. 工業智能白皮書 [R/OL]. 在線報告(2020-04) [2022-08-01]. https://tech.sina.com.cn/roll/2020-07-06/doc-iircuyvk2170592.shtml [25] Zheng Z, Zhang K T, Gao X Q. Human-cyber-physical system for production and operation decision optimization in smart steel plants. Sci China Technol Sci, 2022, 65(2): 247 doi: 10.1007/s11431-020-1838-6 [26] 5G Alliance for Connected Industries and Automation. Integration of 5G with time-sensitive networking for industrial communications [EB/OL]. Report Online (2021-01-19) [2022-08-01]. https://5g-acia.org/whitepapers/integration-of-5g-with-time-sensitive-networking-for-industrial-communications/ [27] Zhang Q M, Zheng X M, Zhang S Y. 5G TSN technologies and innovation. ZTE Technol J, 2022, 28(3): 78張啟明, 鄭興明, 張壽勇. 5G TSN技術的創新研究. 中興通訊技術, 2022, 28(3):78 -