Early hydration heat release and strength evolution of cemented backfill with graded fine tailings
-
摘要: 對分級細尾砂膠結充填體的早期水化反應及力學演化特性進行研究,對不同灰砂比充填體料漿進行水化放熱及電阻特性測試,并根據掃描電子顯微鏡對早期水化產物進行微觀形貌特征分析,最后在單軸壓縮力學試驗結果的基礎上,分析早期水化反應進程及產物對充填體強度演化的影響。研究表明,灰砂比越大,水化放熱速率及放熱量越大,生成水化產物越多,體積電阻率越大。同時水化反應速率直接決定了充填體自身強度形成的快慢,生成的Ca(OH)2減小了料漿體積電阻率,加快充填體自身強度的增長;隨后生成的鈣礬石(Aft)導致顆粒間孔隙更加致密,抑制了離子的溶解,減緩放出熱量速率,從而阻礙了充填體強度的增長;當水化反應進行14 d基本結束后,充填材料凝結固化成為一個整體,強度基本穩定。充填體強度的變化呈現先迅速增加隨后增加趨勢逐漸減小直至穩定的趨勢,為礦山采用分級細尾砂進行井下采空區充填、控制深部采場溫度提供理論支撐及科學指導。Abstract: In this work, the early hydration reaction and mechanical evolution characteristics of graded fine tailing cemented backfill are studied. The hydration exothermicity and electrical resistance characteristics of backfill slurry with different lime sand ratios are tested, and the microscopic morphology characteristics of early hydration products are analyzed according to scanning electron microscopy (SEM). Finally, on the basis of uniaxial compression mechanical test results, the early hydration reaction process and the effect of the products on the strength evolution of the backfill are analyzed. The results showed that the exothermic process of slurry hydration underwent rapid reaction stage I, induction stage II, acceleration stage III, deceleration stage IV, and stabilization stage V. The volume resistivity underwent increasing stage I, decreasing stage II, and accelerated increasing stages III. The slurry lime sand ratio affects the hydration heat release and volume resistivity. The larger ratio is, the greater the hydration heat release rate and heat release, the more hydration products are generated, and the greater the volume resistivity. An increase in the lime sand ratio prolongs the induction time of the hydration reaction and increases the rate of the hydration reaction during the induction period. At the same time, it retards the growth of volume resistivity. The larger the lime sand ratio is, the stronger the retarding effect and the larger the retarding effect on the growth of slurry volume resistivity. The rate of the hydration reaction directly determines the formation speed of the backfill strength. When the main components of the filling material, C3S and C3A, are dissolved rapidly in water, much heat is released. The generated Ca(OH)2 reduces the volume resistivity of the slurry and accelerates the growth of the backfill strength; the AFt generated subsequently compacts the pores between particles, blocks the dissolution of ions, decreases the rate of heat release, and prevents the growth of backfill strength. The backfill strength increases rapidly from 0–3 d and slowly from 3–7 d. When the hydration reaction is basically completed after 14 d, the filling material is solidified overall, and its strength is basically stable. The change in backfill strength first increases and then gradually decreases until stabilizing. These research conclusions provide theoretical support and scientific guidance for mining to adopt graded fine tailings to fill the underground goaf and control the temperature of the deep stope.
-
Key words:
- graded fine tailings /
- fillings /
- early stage /
- hydration exothermic /
- resistivity /
- strength evolution
-
圖 3 試樣充填料漿早期水化放熱速率曲線. (a)水化全過程放熱速率; (b)快速反應階段I; (c)誘導階段II; (d)加速階段III; (e)減速階段IV; (f)穩定階段V
Figure 3. Hydration heat release rate of filling slurry of sample: (a) heat release rate of the entire hydration process; (b) rapid response stage I; (c) induction stage II; (d) acceleration stage III; (e) deceleration stage IV; (f) stable stage V
表 1 分級細尾砂XRF化學成分分析(質量分數)
Table 1. XRF chemical composition analysis of fine tailings
% SiO2 Al2O3 CaO Fe2O3 K2O MgO Na2O TiO2 61.754 12.689 9.1819 5.9527 4.4368 3.3046 1.2438 0.6499 表 2 充填C料XRF化學成分分析(質量分數)
Table 2. XRF chemical composition analysis of filling C material
% CaO SiO2 Al2O3 MgO SO3 Fe2O3 Na2O TiO2 44.57 29.95 10.09 6.639 5.295 1.251 0.722 0.6499 表 3 試樣參數及用量
Table 3. Sample parameters and dosage
No. Cement–sand ratio Raw material consumption Filling material C / g Graded fine tailings / g Water / mL S1 Pure filling material C 2.7315 0 1.5082 S2 1∶4 0.5463 2.1852 1.5082 S3 1∶6 0.3902 2.3413 1.5082 S4 1∶8 0.3035 2.4280 1.5082 表 4 充填料漿早期水化放熱各階段放熱數據表
Table 4. Heat release and heat release rate at each stage of hydration heat release
No. Duration time/h Exothermic/ (J–1·g–1) Average heat release rate / (J·g–1·h–1) Ⅰ Ⅱ Ⅲ Ⅳ Ⅰ Ⅱ Ⅲ Ⅳ Ⅰ Ⅱ Ⅲ Ⅳ S1 0.29 2.51 13.18 156.21 9.62 6.64 53.74 283.04 33.17 2.65 4.08 1.81 S2 0.22 2.25 29.94 139.77 3.74 2.03 61.33 44.37 19.39 1.01 1.74 0.39 S3 0.18 1.73 20.25 150.02 3.49 1.74 35.17 59.02 17.01 0.91 2.05 0.32 S4 0.14 1.70 15.99 154.35 2.15 0.95 15.53 31.17 15.36 0.56 0.97 0.21 www.77susu.com -
參考文獻
[1] Zhao K, Wu J, Yan Y J, et al. Multi-scale characteristics of crack evolution in cemented tailings backfill. Chin J Rock Mech Eng, 2022, 44(08): 1626 doi: 10.13722/j.cnki.jrme.2021.0900趙康, 伍俊, 嚴雅靜, 等. 尾砂膠結充填體裂紋演化多尺度特征. 巖石力學與工程學報, 2022, 44(08):1626 doi: 10.13722/j.cnki.jrme.2021.0900 [2] Zhang X X, Qiao D P, Huang W G. Viscosity of high density filling slurry with waste rock-classified tailings and the law of multi-factor influence. China Min Mag, 2018, 27(11): 133張修香, 喬登攀, 黃溫鋼. 廢石-分級尾砂高濃度充填料漿的黏度及多因素影響規律. 中國礦業, 2018, 27(11):133 [3] Wang Y Y, Zhou T T, Yu Z Q, et al. Study on the mechanical properties of layered cemented backfill under different curing ages. Min Res Dev, 2021, 41(9): 52 doi: 10.13827/j.cnki.kyyk.2021.09.010王永巖, 周彤彤, 于卓群, 等. 不同養護齡期下分層膠結充填體力學特性研究. 礦業研究與開發, 2021, 41(9):52 doi: 10.13827/j.cnki.kyyk.2021.09.010 [4] Zhao K, Huang M, Yan Y J, et al. Mechanical properties and synergistic deformation characteristics of tailings cemented filling assembled material body with different cement–tailings ratios. Chin J Rock Mech Eng, 2021, 40(Suppl 1): 2781 doi: 10.13722/j.cnki.jrme.2020.0692趙康, 黃明, 嚴雅靜, 等. 不同灰砂比尾砂膠結充填材料組合體力學特性及協同變形研究. 巖石力學與工程學報, 2021, 40(增刊 1):2781 doi: 10.13722/j.cnki.jrme.2020.0692 [5] Yu Y, Rao Y Z, Xu W. Effect of bentonite on mechanical properties of cemented backfill. Min Res Dev, 2019, 39(11): 91 doi: 10.13827/j.cnki.kyyk.2019.11.018余姚, 饒運章, 許威. 膨潤土對膠結充填體力學特性的影響. 礦業研究與開發, 2019, 39(11):91 doi: 10.13827/j.cnki.kyyk.2019.11.018 [6] Chen S M, Wang W, Wu A X, et al. Influence rules of curing stress on strength of cemented paste backfill materials and its mechanism analysis. Chin J Nonferrous Met, 2021, 31(12): 3740陳順滿, 王偉, 吳愛祥, 等. 養護壓力對膏體充填體強度影響規律及機理分析. 中國有色金屬學報, 2021, 31(12):3740 [7] Li X, Guo L J, Xu W Y, et al. Study on mechanical properties of cemented filling with full tailings in an iron mine. China Min Mag, 2019, 28(Suppl 2): 420李欣, 郭利杰, 許文遠, 等. 某鐵礦全尾砂膠結充填體力學性能研究. 中國礦業, 2019, 28(增刊 2):420 [8] Wang H L, Guo W J, Chen S J, et al. Experimental study on mechanical properties of paste filling in coal mine. Min Res Dev, 2012, 32(4): 8 doi: 10.13827/j.cnki.kyyk.2012.04.017王海龍, 郭惟嘉, 陳紹杰, 等. 煤礦充填膏體力學性質試驗研究. 礦業研究與開發, 2012, 32(4):8 doi: 10.13827/j.cnki.kyyk.2012.04.017 [9] Zhou K P, Liu W, Zhou Y L, et al. Mechanical properties and damage-softening constitutive model of backfill with different osmotic pressures. Rock Soil Mech, 2019, 40(10): 3724 doi: 10.16285/j.rsm.2018.1305周科平, 劉維, 周彥龍, 等. 不同滲透力的類充填體力學特性及損傷軟化本構模型研究. 巖土力學, 2019, 40(10):3724 doi: 10.16285/j.rsm.2018.1305 [10] Li Z J, Cheng H J, Yang M H. Study on mechanical property and proportion optimization of cemented filling body based on orthogonal test. Min Res Dev, 2019, 39(5): 95 doi: 10.13827/j.cnki.kyyk.2019.05.019李占金, 程豪杰, 楊美宏. 基于正交試驗的膠結充填體力學性能及配比優化方案研究. 礦業研究與開發, 2019, 39(5):95 doi: 10.13827/j.cnki.kyyk.2019.05.019 [11] Yan B X, Zhu W C, Hou C, et al. A comparative study on the stress distribution in mine backfill through theoretical and numerical analysis. J Northeast Univ, 2019, 40(12): 1773閆保旭, 朱萬成, 侯晨, 等. 充填體應力分布理論分析及數值模擬對比研究. 東北大學學報(自然科學版), 2019, 40(12):1773 [12] Liu C, Han B, Sun W, et al. Experimental study of strength of backfillings of cemented rock debris and its application under low temperature condition. Chin J Rock Mech Eng, 2015, 34(1): 139 doi: 10.13722/j.cnki.jrme.2015.01.015劉超, 韓斌, 孫偉, 等. 高寒地區廢石破碎膠結充填體強度特性試驗研究與工業應用. 巖石力學與工程學報, 2015, 34(1):139 doi: 10.13722/j.cnki.jrme.2015.01.015 [13] Wen Z J, Gao Q, Yang Z Q, et al. Mechanical properties and hydration mechanism of Jinchuan nickel slag filling cementitious material. Chin J Nonferrous Met, 2021, 31(4): 1074 doi: 10.11817/j.ysxb.1004.0609.2021-36585溫震江, 高謙, 楊志強, 等. 金川鎳渣充填膠凝材料力學性能與水化機理. 中國有色金屬學報, 2021, 31(4):1074 doi: 10.11817/j.ysxb.1004.0609.2021-36585 [14] Zhang Q, He H P, Tao Q. Parameters optimization of magnesite calcination and hydration dynamics of optimized sample. Chin J Nonferrous Met, 2016, 26(3): 699 doi: 10.19476/j.ysxb.1004.0609.2016.03.027張強, 何宏平, 陶奇. 菱鎂礦煅燒參數優化及其產物水化動力學解析. 中國有色金屬學報, 2016, 26(3):699 doi: 10.19476/j.ysxb.1004.0609.2016.03.027 [15] Kumar S, Gupta R C, Shrivastava S. Effective utilisation of quartz sandstone mining wastes: A technical note on its thermal resistance. J Clean Prod, 2017, 140: 1129 doi: 10.1016/j.jclepro.2016.10.053 [16] Chen L, Pan R Y, Shen X D, et al. Strength and hydration property of fly ash–slag–cement composite cementitious material. J Build Mater, 2010, 13(3): 380 doi: 10.3969/j.issn.1007-9629.2010.03.022陳琳, 潘如意, 沈曉冬, 等. 粉煤灰–礦渣–水泥復合膠凝材料強度和水化性能. 建筑材料學報, 2010, 13(3):380 doi: 10.3969/j.issn.1007-9629.2010.03.022 [17] Wu D, Cai S J, Huang G. Coupled effect of cement hydration and temperature on rheological properties of fresh cemented tailings backfill slurry. Trans Nonferrous Met Soc China, 2014, 24(9): 2954 doi: 10.1016/S1003-6326(14)63431-2 [18] Chen S, Liu R S, Wang Q C. Experimental study on affected factors of hydration heat of common silicate cement. Railw Eng, 2014, 54(6): 159 doi: 10.3969/j.issn.1003-1995.2014.06.46陳松, 劉汝生, 王起才. 普通硅酸鹽水泥水化熱影響因素試驗研究. 鐵道建筑, 2014, 54(6):159 doi: 10.3969/j.issn.1003-1995.2014.06.46 [19] Li G X, Tong W L, Zhang G, et al. Influence of fly ash and slag on the properties of magnesium phosphate cement. Bull Chin Ceram Soc, 2016, 35(2): 352 doi: 10.16552/j.cnki.issn1001-1625.2016.02.003李國新, 仝萬亮, 張歌, 等. 粉煤灰和礦粉對磷酸鎂水泥性能的影響. 硅酸鹽通報, 2016, 35(2):352 doi: 10.16552/j.cnki.issn1001-1625.2016.02.003 [20] Wu L L, Kang T H, Yin B, et al. Microcalorimetric test and analysis of hydration heat of fly ash paste-filling material. J China Coal Soc, 2015, 40(12): 2801 doi: 10.13225/j.cnki.jccs.2014.1773毋林林, 康天合, 尹博, 等. 粉煤灰膏體充填材料水化放熱特性的微量熱測試與分析. 煤炭學報, 2015, 40(12):2801 doi: 10.13225/j.cnki.jccs.2014.1773 [21] Chen Q S, Zhang Q, Qi C C, et al. Temperature-depending characteristics of strength and leaching toxicity of phosphogympsum-based cemented paste backfill. Chin J Nonferrous Met, 2021, 31(4): 1084陳秋松, 張琦, 齊沖沖, 等. 磷石膏充填體強度和浸出毒性的溫變規律. 中國有色金屬學報, 2021, 31(4):1084 [22] Dai F L, Wang H T, Ding J H, et al. Effect of magnesia/phosphate ratio on hydration processes of magnesium phosphate cement. J Chin Ceram Soc, 2017, 45(8): 1144 doi: 10.14062/j.issn.0454-5648.2017.08.13戴豐樂, 汪宏濤, 丁建華, 等. 氧化鎂與磷酸鹽質量比對磷酸鎂水泥水化歷程的影響. 硅酸鹽學報, 2017, 45(8):1144 doi: 10.14062/j.issn.0454-5648.2017.08.13 [23] Chang Z, Wang L C. Mesoscopic numerical simulation of the temperature field of concrete. Eng J Wuhan Univ, 2017, 50(6): 938 doi: 10.14188/j.1671-8844.2017-06-021常澤, 王立成. 混凝土內部溫度場的細觀數值模擬研究. 武漢大學學報(工學版), 2017, 50(6):938 doi: 10.14188/j.1671-8844.2017-06-021 [24] Zhang T, Yang W H, Chen G H, et al. Monitoring and analysis of hydration heat temperature field for high performance mass concrete freezing shaft lining. J Min &Saf Eng, 2016, 33(2): 290 doi: 10.13545/j.cnki.jmse.2016.02.016張濤, 楊維好, 陳國華, 等. 大體積高性能混凝土凍結井壁水化熱溫度場實測與分析. 采礦與安全工程學報, 2016, 33(2):290 doi: 10.13545/j.cnki.jmse.2016.02.016 [25] Xia C C, Liu Z F, Xiao S G, et al. Influence of hydration heat on heat transfer effect of ground heat exchanger of ground source heat pump in summer. J Tongji Univ, 2015, 43(9): 1332 doi: 10.11908/j.issn.0253-374x.2015.09.008(夏才初, 劉志方, 肖素光, 等. 水化熱對地源熱泵地埋管夏季換熱效果的影響. 同濟大學學報(自然科學版), 2015, 43(9):1332 doi: 10.11908/j.issn.0253-374x.2015.09.008 [26] Koohestani B, Khodadadi Darban A, Mokhtari P. A comparison between the influence of superplasticizer and organosilanes on different properties of cemented paste backfill. Constr Build Mater, 2018, 173: 180 doi: 10.1016/j.conbuildmat.2018.03.265 [27] Yang Y Y, Cui Z D, Li X Q, et al. Development and materials characteristics of fly ash- slag-based grout for use in sulfate-rich environments. Clean Techn Environ Policy, 2016, 18(3): 949 doi: 10.1007/s10098-015-1040-8 [28] Zhai C, Sun Y, Fan Y R, et al. Application and prospect of low-field nuclear magnetic resonance technology in accurate characterization of coal pore structure. J China Coal Soc, 2022, 47(2): 828翟成, 孫勇, 范宜仁, 等. 低場核磁共振技術在煤孔隙結構精準表征中的應用與展望. 煤炭學報, 2022, 47(2):828 [29] Chen J L, Zhang N, Li H, et al. Hydration characteristics of red-mud based paste-like backfill material. Chin J Eng, 2017, 39(11): 1640陳蛟龍, 張娜, 李恒, 等. 赤泥基似膏體充填材料水化特性研究. 工程科學學報, 2017, 39(11):1640 [30] Liu S L, Wang F G, Li G C, et al. Optimization of mixture ratio and microstructure influence mechanism of composite filling slurry based on response surface method. Acta Mater Compos Sin, 2021, 38(8): 2724 doi: 10.13801/j.cnki.fhclxb.20201013.001劉樹龍, 王發剛, 李公成, 等. 基于響應面法的復合充填料漿配比優化及微觀結構影響機制. 復合材料學報, 2021, 38(8):2724 doi: 10.13801/j.cnki.fhclxb.20201013.001 -