<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于響應曲面法制備鋼渣–花生殼基生態活性炭及其吸附性能研究

杜曉燕 韓偉勝 孟子涵 于先坤 楊曉軍 張浩

杜曉燕, 韓偉勝, 孟子涵, 于先坤, 楊曉軍, 張浩. 基于響應曲面法制備鋼渣–花生殼基生態活性炭及其吸附性能研究[J]. 工程科學學報, 2023, 45(6): 979-986. doi: 10.13374/j.issn2095-9389.2022.07.18.005
引用本文: 杜曉燕, 韓偉勝, 孟子涵, 于先坤, 楊曉軍, 張浩. 基于響應曲面法制備鋼渣–花生殼基生態活性炭及其吸附性能研究[J]. 工程科學學報, 2023, 45(6): 979-986. doi: 10.13374/j.issn2095-9389.2022.07.18.005
DU Xiao-yan, HAN Wei-sheng, MENG Zi-han, YU Xian-kun, YANG Xiao-jun, ZHANG Hao. Preparation of steel slag–peanut shell-based ecological activated carbon based on response surface method and its adsorption performance[J]. Chinese Journal of Engineering, 2023, 45(6): 979-986. doi: 10.13374/j.issn2095-9389.2022.07.18.005
Citation: DU Xiao-yan, HAN Wei-sheng, MENG Zi-han, YU Xian-kun, YANG Xiao-jun, ZHANG Hao. Preparation of steel slag–peanut shell-based ecological activated carbon based on response surface method and its adsorption performance[J]. Chinese Journal of Engineering, 2023, 45(6): 979-986. doi: 10.13374/j.issn2095-9389.2022.07.18.005

基于響應曲面法制備鋼渣–花生殼基生態活性炭及其吸附性能研究

doi: 10.13374/j.issn2095-9389.2022.07.18.005
基金項目: 中國博士后科學基金資助項目(2017M612051);金屬礦山安全與健康國家重點實驗室開發基金資助項目(2020-JSKSSYS-01);安徽省博士后研究人員科研活動經費資助項目(2019B336);冶金工程與資源綜合利用安徽省重點實驗室(安徽工業大學)開放基金資助項目(SKF21-03);馬鞍山市博士后研究人員科研活動經費資助項目(2020A11)
詳細信息
    通訊作者:

    E-mail: fengxu19821018@163.com

  • 中圖分類號: X753

Preparation of steel slag–peanut shell-based ecological activated carbon based on response surface method and its adsorption performance

More Information
  • 摘要: 以鋼渣超微粉和花生殼為原料制備鋼渣–花生殼基生態活性炭,基于響應曲面法研究微波功率、浸漬比、鋼渣摻量和鋼渣細度對鋼渣–花生殼基生態活性炭對甲醛氣體吸附率的影響,并對其進行優化處理。利用X-射線紅外光譜儀、場發射掃描電鏡、比表面積及孔徑測定儀等對鋼渣–花生殼基生態活性炭進行表征分析。結果表明:鋼渣–花生殼基生態活性炭最優制備參數為微波功率530 W,鋼渣細度1160目,鋼渣摻量(質量分數)10.8%,浸漬比1.25,其對甲醛氣體的吸附率為94.14%。影響鋼渣–花生殼基生態活性炭性能的因素次序依次為:微波功率、鋼渣摻量、浸漬比、鋼渣細度,其中微波功率與浸漬比、微波功率與鋼渣摻量、鋼渣摻量與鋼渣細度均存在顯著交互作用。適量鋼渣改性活性炭有利于形成規則的孔結構、提高表面酸性官能團含量以及增強表面極性。

     

  • 圖  1  各因素交互作用對甲醛氣體吸附率的響應面與等高線圖. (a)微波功率與浸漬比;(b)微波功率與鋼渣摻量;(c)鋼渣細度與鋼渣摻量

    Figure  1.  Response surface and the contour map of the interaction of various factors for the formaldehyde adsorption rate: (a) microwave power and impregnation ratio; (b) microwave power and steel slag mixing amount; (c) steel slag fineness and steel slag mixing amount

    圖  2  BET測試結果.生態活性炭的吸脫附等溫線(a)和孔徑分布(b);最優鋼渣–花生殼基生態活性炭吸脫附等溫線(c)和孔徑分布(d)

    Figure  2.  BET test results: adsorption–desorption isotherm (a) and aperture distribution (b) of ecological activated carbon; adsorption–desorption isotherm (c) and aperture distribution (d) of optimal steel slag–peanut shell-based ecological activated carbon

    圖  3  生態活性炭的FTIR表征

    Figure  3.  FTIR characterization of the activated carbon

    圖  4  SEM測試結果。(a)生態活性炭;(b)最優鋼渣–花生殼生態活性炭

    Figure  4.  SEM micrographs: (a) ecological activated carbon; (b) optimal steel slag–peanut shell-based ecological activated carbon

    表  1  鋼渣超微粉的化學成分(質量分數)

    Table  1.   Chemical composition of steel slag ultrafine powder %

    CaOFe2O3SiO2MgOP2O5Al2O3MnOV2O5TiO2Other
    45.2427.6112.247.492.172.061.670.6130.4530.434
    下載: 導出CSV

    表  2  實驗自變量因素及水平

    Table  2.   Factors and levels of the independent variables

    No.Factors
    Microwave power/WSteel slag fineness (mesh)Steel slag content/%Impregnation ratio
    ?1400800101.00
    05751000151.25
    17001200201.50
    下載: 導出CSV

    表  3  Box–Behnken實驗設計結果

    Table  3.   Box–Behnken experiment design results

    No.CodeAdsorption rate of formaldehyde gas/%
    Microwave power/WSteel slag fineness (mesh)Steel
    slag
    content/%
    Impregnation ratio/%
    14001000101.2583.6
    25501000101.0088.4
    34001000151.0077.4
    4400800151.2586.2
    5700800151.2581.5
    65501000101.5086.1
    75501000151.2592.0
    8550800201.2591.2
    9550800151.5084.6
    104001000151.5080.4
    115501000151.2590.5
    125501200201.2582.3
    135501200151.5084.5
    145501200101.2592.5
    154001200151.2588.6
    164001000201.2581.3
    175501000151.2591.1
    187001000151.5064.2
    195501200151.0087.1
    20550800101.2590.3
    215501000201.5078.4
    227001000101.2587.5
    237001200151.2578.5
    24550800151.0091.9
    255501000151.2594.0
    265501000201.0085.1
    277001000201.2565.2
    287001000151.0077.3
    295501000151.2591.2
    下載: 導出CSV

    表  4  方差分析表

    Table  4.   Analysis of variance

    No.Sum of
    squares
    Degree of
    freedom
    Square
    error
    FP
    Model1466.8014104.7720.72<0.0001
    A156.241156.2430.90<0.0001
    B14.52114.522.870.1122
    C160.601160.6031.77<0.0001
    D70.08170.0813.860.0023
    AB7.2917.291.440.2497
    AC100110019.780.0006
    AD64.80164.8012.820.0030
    BC36.60136.607.240.0176
    BD5.5215.521.090.3137
    CD4.8414.840.960.3445
    A2654.721654.72129.50<0.0001
    B26.6916.691.320.2692
    C237.26137.267.370.0168
    D2220.781230.7843.67<0.0001
    Residual70.78145.06
    Lack of fit63.37106.343.420.1237
    Errors7.4141.85
    Deviation1537.5828
    下載: 導出CSV

    表  5  回歸方程的R2和標準差分析

    Table  5.   R2 and standard deviation analysis of the regression equations

    Std. Dev.MeanC.V./%PressR2Adj R2Pred R2Adeq precision
    2.2584.622.66373.570.95400.90790.755118.634
    下載: 導出CSV

    表  6  孔結構測試結果

    Table  6.   Results of the hole structure test

    SampleBET/(m2·g–1)Smicro/(m2·g–1)Vtotal/(cm3·g–1)Vmicro/(cm3·g–1)Daver/nm
    Ecological activated carbon1008.68360.960.6220.1952.46
    Optimal steel slag–peanut shell-based ecological activated carbon397.96143.980.3310.0743.33
    Note: BET is surface area; Smicro is surface area of micropore; Vtotal is total pore volume; Vmicro is pore volume of micropore; Daver is mean pore size.
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yu J, Liang W Y, Wang L, et al. Phosphate removal from domestic wastewater using thermally modified steel slag. J Environ Sci, 2015, 31: 81 doi: 10.1016/j.jes.2014.12.007
    [2] Wu F, Yu Q L, Gauvin F, et al. A facile manufacture of highly adsorptive aggregates using steel slag and porous expanded silica for phosphorus removal. Resour Conserv Recycl, 2021, 166: 105238 doi: 10.1016/j.resconrec.2020.105238
    [3] Shi C H, Wang X C, Zhou S, et al. Mechanism, application, influencing factors and environmental benefit assessment of steel slag in removing pollutants from water: A review. J Water Process Eng, 2022, 47: 102666 doi: 10.1016/j.jwpe.2022.102666
    [4] Zhang H. Preparation of ecological activated carbon based on steel slag-modified biomass waste material and its formaldehyde degradation performance. Chin J Eng, 2020, 42(2): 172

    張浩. 鋼渣改性生物質廢棄材料制備生態活性炭及其降解甲醛性能. 工程科學學報, 2020, 42(2):172
    [5] Zhang H, Gao Q, Han X X, et al. Mechanism analysis of formaldehyde degradation by hot braised slag modified activated carbon based on XRF and XRD. Spectrosc Spectr Anal, 2020, 40(5): 1447

    張浩, 高青, 韓祥祥, 等. 基于XRF和XRD的熱悶渣改性活性炭降解甲醛機理分析. 光譜學與光譜分析, 2020, 40(5):1447
    [6] Li H Z, Guo R T, Chen Y P, et al. Utilization of steel slag as a highly efficient absorbent for SO2 removal at coal-fired power stations. Environ Adv, 2022, 9: 100276 doi: 10.1016/j.envadv.2022.100276
    [7] Zhang G C, Bai X G, Wu H L, et al. Experimental study on desulfurization process of wet limestone-gypsum with steel slag desulfurizer. J Iron Steel Res, 2020, 32(7): 647

    張國成, 白曉光, 鄔虎林, 等. 鋼渣脫硫劑用于濕法石灰石-石膏法脫硫工藝的試驗研究. 鋼鐵研究學報, 2020, 32(7):647
    [8] Ying Y Q. Effect and Safety Evaluation of Desulfurized Steel Slag in Improving Saline Alkali Soil [Dissertation]. Hangzhou: Zhejiang University, 2021

    應雨錢. 脫硫鋼渣對鹽堿地的改良效果和安全性評價[學位論文]. 杭州: 浙江大學, 2021
    [9] Cha W, Kim J, Choi H. Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment. Water Res, 2006, 40(5): 1034 doi: 10.1016/j.watres.2005.12.039
    [10] Xu B, Yi Y L. Stabilisation/solidification of lead-contaminated soil by using ladle furnace slag and carbon dioxide. Soils Found, 2022, 62(5): 101205 doi: 10.1016/j.sandf.2022.101205
    [11] Liu L Y, Yu X P, Dong X K, et al. The research on formaldehyde concentration distribution in new decorated residential buildings. Procedia Eng, 2017, 205: 1535 doi: 10.1016/j.proeng.2017.10.238
    [12] Zhang S S. Research on the Effect of Modification of Activated Carbon on the Adsorption Removal of Gas Pollutants of Formaldehyde and Ammonia [Dissertation]. Harbin: Northeast Forestry University, 2015

    張雙雙. 活性炭改性對氣相污染物甲醛及氨吸附去除影響的研究[學位論文]. 哈爾濱: 東北林業大學, 2015
    [13] Zhang X Y, Gao B, Creamer A E, et al. Adsorption of VOCs onto engineered carbon materials: A review. J Hazard Mater, 2017, 338: 102 doi: 10.1016/j.jhazmat.2017.05.013
    [14] Xiao K, Wang Q. Progress in research on adsorption for abatement of indoor formaldehyde. Chem Ind Eng Prog, 2021, 40(10): 5747

    肖康, 王瓊. 吸附法凈化室內甲醛研究進展. 化工進展, 2021, 40(10):5747
    [15] Zhang H, Li Z H. MicroRNA–16 via Twist1 inhibits EMT induced by PM2.5 exposure in human hepatocellular carcinoma. Open Med (Wars), 2019, 14: 673 doi: 10.1515/med-2019-0078
    [16] Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201 doi: 10.1016/j.jallcom.2018.11.375
    [17] Xing B, Yang G, Chen H L, et al. Catalytic wet oxidation of high concentration formaldehyde wastewater over Pt/nitrogen-doped activated carbon. Reac Kinet Mech Cat, 2019, 126(1): 547 doi: 10.1007/s11144-018-1480-3
    [18] Zhang H, Huang X J, Zong Z F, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property. J Mater Eng, 2017, 45(6): 67 doi: 10.11868/j.issn.1001-4381.2016.000979

    張浩, 黃新杰, 宗志芳, 等. 基于吸附性能的生物質基多孔活性炭制備方案的響應面法優化. 材料工程, 2017, 45(6):67 doi: 10.11868/j.issn.1001-4381.2016.000979
    [19] Yang D. Space tube-shaped fitting slgorithm based on spatial Gauss-Newton method. J Dalian Univ, 2014, 35(3): 19 doi: 10.3969/j.issn.1008-2395.2014.03.005

    楊鐸. 基于Gauss-Newton法的空間管形擬合算法的研究. 大連大學學報, 2014, 35(3):19 doi: 10.3969/j.issn.1008-2395.2014.03.005
    [20] Niu Z R, Liu Y, Li D H, et al. Optimization of sludge-based activated carbon preparation using response surface methodology. Acta Sci Circumstantiae, 2014, 34(12): 3022

    牛志睿, 劉羽, 李大海, 等. 響應面法優化制備污泥基活性炭. 環境科學學報, 2014, 34(12):3022
    [21] Xu R R, Pang W Q, Yu J H, et al. Molecular Sieve Combined with Porous Merial Chemistry. Beijing: Science Press, 2004

    徐如人, 龐文琴, 于吉紅, 等. 分子篩與多孔材料化學. 北京: 科學出版社, 2004
    [22] Kondo S, Ishikawa T, Abe I. Adsorption Sciences. 2nd Ed. Beijing: Chemical Industry Press, 2006

    近藤精一, 石川達雄, 安部郁夫. 吸附科學. 2版. 北京: 化學工業出版社, 2006
    [23] Wang L C, Liu S S, Ma H H, et al. Activated carbon loaded MnO2 and its adsorption of formaldehyde. Appl Chem Ind, 2020, 49(5): 1110 doi: 10.3969/j.issn.1671-3206.2020.05.011

    王亮才, 劉沙沙, 馬歡歡, 等. 活性炭負載MnO2及其對甲醛的吸附. 應用化工, 2020, 49(5):1110 doi: 10.3969/j.issn.1671-3206.2020.05.011
    [24] Biswas K, Gupta K, Goswami A, et al. Fluoride removal efficiency from aqueous solution by synthetic iron(III)-aluminum(III)-chromium(III) ternary mixed oxide. Desalination, 2010, 255(1-3): 44 doi: 10.1016/j.desal.2010.01.019
    [25] Takaoka M, Yokokawa H, Takeda N. The effect of treatment of activated carbon by H2O2 or HNO3 on the decomposition of pentachlorobenzene. Appl Catal B Environ, 2007, 74(3-4): 179 doi: 10.1016/j.apcatb.2007.02.009
    [26] Zhang H, Zhang L, Long H M. Spectroscopic analysis of preparation of ecological activated carbon based on electric furnace slag ultrafine powder modified biomass waste material. Spectrosc Spectr Anal, 2020, 40(3): 861

    張浩, 張磊, 龍紅明. 電爐渣超微粉改性生物質廢棄物制備生態活性炭的光譜學分析. 光譜學與光譜分析, 2020, 40(3):861
  • 加載中
圖(4) / 表(6)
計量
  • 文章訪問數:  421
  • HTML全文瀏覽量:  157
  • PDF下載量:  91
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-07-18
  • 網絡出版日期:  2022-09-14
  • 刊出日期:  2023-05-31

目錄

    /

    返回文章
    返回