Preparation of steel slag–peanut shell-based ecological activated carbon based on response surface method and its adsorption performance
-
摘要: 以鋼渣超微粉和花生殼為原料制備鋼渣–花生殼基生態活性炭,基于響應曲面法研究微波功率、浸漬比、鋼渣摻量和鋼渣細度對鋼渣–花生殼基生態活性炭對甲醛氣體吸附率的影響,并對其進行優化處理。利用X-射線紅外光譜儀、場發射掃描電鏡、比表面積及孔徑測定儀等對鋼渣–花生殼基生態活性炭進行表征分析。結果表明:鋼渣–花生殼基生態活性炭最優制備參數為微波功率530 W,鋼渣細度1160目,鋼渣摻量(質量分數)10.8%,浸漬比1.25,其對甲醛氣體的吸附率為94.14%。影響鋼渣–花生殼基生態活性炭性能的因素次序依次為:微波功率、鋼渣摻量、浸漬比、鋼渣細度,其中微波功率與浸漬比、微波功率與鋼渣摻量、鋼渣摻量與鋼渣細度均存在顯著交互作用。適量鋼渣改性活性炭有利于形成規則的孔結構、提高表面酸性官能團含量以及增強表面極性。Abstract: Steel slag–peanut shell-based activated carbon was prepared using ultrafine steel slag powder and peanut shells through microwave processing. The response surface method was used to evaluate the effects of microwave power, impregnation ratio, steel slag content, and steel slag particle size on the rate of the adsorption of formaldehyde gas by the prepared activated carbon. Subsequently, optimum parameters were calculated for the preparation of activated carbon with the maximum rate of adsorption for formaldehyde gas adsorption. Finally, the activated carbon was characterized by an X-ray infrared spectrometer, field emission scanning electron microscope, and specific surface area and pore size analyzer. Results revealed that the activated carbon prepared using 530 W of microwave power, steel slag powder corresponding to a mesh size 1160, steel slag content equal to 10.8%, and impregnation ratio of 1.25 has the highest formaldehyde adsorption rate. According to the established regression model, the theoretical adsorption rate of formaldehyde gas will be 94.96% under the above optimal preparation conditions. Thus, the prepared activated carbon had a formaldehyde adsorption rate of 94.14%, which is within a 5% error range of the adsorption rate estimated by our regression model for the same conditions. We further demonstrated that our response curve model can predict the adsorption rate of the activated carbon prepared by this process efficiently and that it is feasible to optimize the preparation of activated carbon by the response surface method. Furthermore, the regression analysis further reveals that the degree of influence of the four factors related to this method of preparing activated carbon on the rate of formaldehyde gas adsorption is in the following order, from large to small: microwave power, steel slag content, impregnation ratio, and steel slag fineness. The mutual interaction of the four influencing factors on the formaldehyde gas adsorption rate can be intuitively observed through the three-dimensional response surface graph. Pore structure analysis of the activated carbon prepared using the optimal preparation conditions revealed that it has an H3-type hysteresis loop and a flat-panel slot-like structure. The pore size distribution is uneven, with predominant micropores and small-sized mesopores. Fourier-transform infrared spectroscopy analysis showed that after adding steel slag for modification, the activated carbon had more acidic functional groups, which is beneficial to the adsorption of formaldehyde. Morphological analysis reveals that the layered structure of the activated carbon is clear and that adding a small amount of steel slag is beneficial to improve the rate of pulverization.
-
Key words:
- steel slag /
- peanut shell /
- ecological activated carbon /
- formaldehyde /
- response surface method /
- optimization
-
圖 1 各因素交互作用對甲醛氣體吸附率的響應面與等高線圖. (a)微波功率與浸漬比;(b)微波功率與鋼渣摻量;(c)鋼渣細度與鋼渣摻量
Figure 1. Response surface and the contour map of the interaction of various factors for the formaldehyde adsorption rate: (a) microwave power and impregnation ratio; (b) microwave power and steel slag mixing amount; (c) steel slag fineness and steel slag mixing amount
圖 2 BET測試結果.生態活性炭的吸脫附等溫線(a)和孔徑分布(b);最優鋼渣–花生殼基生態活性炭吸脫附等溫線(c)和孔徑分布(d)
Figure 2. BET test results: adsorption–desorption isotherm (a) and aperture distribution (b) of ecological activated carbon; adsorption–desorption isotherm (c) and aperture distribution (d) of optimal steel slag–peanut shell-based ecological activated carbon
表 1 鋼渣超微粉的化學成分(質量分數)
Table 1. Chemical composition of steel slag ultrafine powder
% CaO Fe2O3 SiO2 MgO P2O5 Al2O3 MnO V2O5 TiO2 Other 45.24 27.61 12.24 7.49 2.17 2.06 1.67 0.613 0.453 0.434 表 2 實驗自變量因素及水平
Table 2. Factors and levels of the independent variables
No. Factors Microwave power/W Steel slag fineness (mesh) Steel slag content/% Impregnation ratio ?1 400 800 10 1.00 0 575 1000 15 1.25 1 700 1200 20 1.50 表 3 Box–Behnken實驗設計結果
Table 3. Box–Behnken experiment design results
No. Code Adsorption rate of formaldehyde gas/% Microwave power/W Steel slag fineness (mesh) Steel
slag
content/%Impregnation ratio/% 1 400 1000 10 1.25 83.6 2 550 1000 10 1.00 88.4 3 400 1000 15 1.00 77.4 4 400 800 15 1.25 86.2 5 700 800 15 1.25 81.5 6 550 1000 10 1.50 86.1 7 550 1000 15 1.25 92.0 8 550 800 20 1.25 91.2 9 550 800 15 1.50 84.6 10 400 1000 15 1.50 80.4 11 550 1000 15 1.25 90.5 12 550 1200 20 1.25 82.3 13 550 1200 15 1.50 84.5 14 550 1200 10 1.25 92.5 15 400 1200 15 1.25 88.6 16 400 1000 20 1.25 81.3 17 550 1000 15 1.25 91.1 18 700 1000 15 1.50 64.2 19 550 1200 15 1.00 87.1 20 550 800 10 1.25 90.3 21 550 1000 20 1.50 78.4 22 700 1000 10 1.25 87.5 23 700 1200 15 1.25 78.5 24 550 800 15 1.00 91.9 25 550 1000 15 1.25 94.0 26 550 1000 20 1.00 85.1 27 700 1000 20 1.25 65.2 28 700 1000 15 1.00 77.3 29 550 1000 15 1.25 91.2 表 4 方差分析表
Table 4. Analysis of variance
No. Sum of
squaresDegree of
freedomSquare
errorF P Model 1466.80 14 104.77 20.72 <0.0001 A 156.24 1 156.24 30.90 <0.0001 B 14.52 1 14.52 2.87 0.1122 C 160.60 1 160.60 31.77 <0.0001 D 70.08 1 70.08 13.86 0.0023 AB 7.29 1 7.29 1.44 0.2497 AC 100 1 100 19.78 0.0006 AD 64.80 1 64.80 12.82 0.0030 BC 36.60 1 36.60 7.24 0.0176 BD 5.52 1 5.52 1.09 0.3137 CD 4.84 1 4.84 0.96 0.3445 A2 654.72 1 654.72 129.50 <0.0001 B2 6.69 1 6.69 1.32 0.2692 C2 37.26 1 37.26 7.37 0.0168 D2 220.78 1 230.78 43.67 <0.0001 Residual 70.78 14 5.06 — — Lack of fit 63.37 10 6.34 3.42 0.1237 Errors 7.41 4 1.85 — — Deviation 1537.58 28 — — — 表 5 回歸方程的R2和標準差分析
Table 5. R2 and standard deviation analysis of the regression equations
Std. Dev. Mean C.V./% Press R2 Adj R2 Pred R2 Adeq precision 2.25 84.62 2.66 373.57 0.9540 0.9079 0.7551 18.634 表 6 孔結構測試結果
Table 6. Results of the hole structure test
Sample BET/(m2·g–1) Smicro/(m2·g–1) Vtotal/(cm3·g–1) Vmicro/(cm3·g–1) Daver/nm Ecological activated carbon 1008.68 360.96 0.622 0.195 2.46 Optimal steel slag–peanut shell-based ecological activated carbon 397.96 143.98 0.331 0.074 3.33 Note: BET is surface area; Smicro is surface area of micropore; Vtotal is total pore volume; Vmicro is pore volume of micropore; Daver is mean pore size. www.77susu.com -
參考文獻
[1] Yu J, Liang W Y, Wang L, et al. Phosphate removal from domestic wastewater using thermally modified steel slag. J Environ Sci, 2015, 31: 81 doi: 10.1016/j.jes.2014.12.007 [2] Wu F, Yu Q L, Gauvin F, et al. A facile manufacture of highly adsorptive aggregates using steel slag and porous expanded silica for phosphorus removal. Resour Conserv Recycl, 2021, 166: 105238 doi: 10.1016/j.resconrec.2020.105238 [3] Shi C H, Wang X C, Zhou S, et al. Mechanism, application, influencing factors and environmental benefit assessment of steel slag in removing pollutants from water: A review. J Water Process Eng, 2022, 47: 102666 doi: 10.1016/j.jwpe.2022.102666 [4] Zhang H. Preparation of ecological activated carbon based on steel slag-modified biomass waste material and its formaldehyde degradation performance. Chin J Eng, 2020, 42(2): 172張浩. 鋼渣改性生物質廢棄材料制備生態活性炭及其降解甲醛性能. 工程科學學報, 2020, 42(2):172 [5] Zhang H, Gao Q, Han X X, et al. Mechanism analysis of formaldehyde degradation by hot braised slag modified activated carbon based on XRF and XRD. Spectrosc Spectr Anal, 2020, 40(5): 1447張浩, 高青, 韓祥祥, 等. 基于XRF和XRD的熱悶渣改性活性炭降解甲醛機理分析. 光譜學與光譜分析, 2020, 40(5):1447 [6] Li H Z, Guo R T, Chen Y P, et al. Utilization of steel slag as a highly efficient absorbent for SO2 removal at coal-fired power stations. Environ Adv, 2022, 9: 100276 doi: 10.1016/j.envadv.2022.100276 [7] Zhang G C, Bai X G, Wu H L, et al. Experimental study on desulfurization process of wet limestone-gypsum with steel slag desulfurizer. J Iron Steel Res, 2020, 32(7): 647張國成, 白曉光, 鄔虎林, 等. 鋼渣脫硫劑用于濕法石灰石-石膏法脫硫工藝的試驗研究. 鋼鐵研究學報, 2020, 32(7):647 [8] Ying Y Q. Effect and Safety Evaluation of Desulfurized Steel Slag in Improving Saline Alkali Soil [Dissertation]. Hangzhou: Zhejiang University, 2021應雨錢. 脫硫鋼渣對鹽堿地的改良效果和安全性評價[學位論文]. 杭州: 浙江大學, 2021 [9] Cha W, Kim J, Choi H. Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment. Water Res, 2006, 40(5): 1034 doi: 10.1016/j.watres.2005.12.039 [10] Xu B, Yi Y L. Stabilisation/solidification of lead-contaminated soil by using ladle furnace slag and carbon dioxide. Soils Found, 2022, 62(5): 101205 doi: 10.1016/j.sandf.2022.101205 [11] Liu L Y, Yu X P, Dong X K, et al. The research on formaldehyde concentration distribution in new decorated residential buildings. Procedia Eng, 2017, 205: 1535 doi: 10.1016/j.proeng.2017.10.238 [12] Zhang S S. Research on the Effect of Modification of Activated Carbon on the Adsorption Removal of Gas Pollutants of Formaldehyde and Ammonia [Dissertation]. Harbin: Northeast Forestry University, 2015張雙雙. 活性炭改性對氣相污染物甲醛及氨吸附去除影響的研究[學位論文]. 哈爾濱: 東北林業大學, 2015 [13] Zhang X Y, Gao B, Creamer A E, et al. Adsorption of VOCs onto engineered carbon materials: A review. J Hazard Mater, 2017, 338: 102 doi: 10.1016/j.jhazmat.2017.05.013 [14] Xiao K, Wang Q. Progress in research on adsorption for abatement of indoor formaldehyde. Chem Ind Eng Prog, 2021, 40(10): 5747肖康, 王瓊. 吸附法凈化室內甲醛研究進展. 化工進展, 2021, 40(10):5747 [15] Zhang H, Li Z H. MicroRNA–16 via Twist1 inhibits EMT induced by PM2.5 exposure in human hepatocellular carcinoma. Open Med (Wars), 2019, 14: 673 doi: 10.1515/med-2019-0078 [16] Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201 doi: 10.1016/j.jallcom.2018.11.375 [17] Xing B, Yang G, Chen H L, et al. Catalytic wet oxidation of high concentration formaldehyde wastewater over Pt/nitrogen-doped activated carbon. Reac Kinet Mech Cat, 2019, 126(1): 547 doi: 10.1007/s11144-018-1480-3 [18] Zhang H, Huang X J, Zong Z F, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property. J Mater Eng, 2017, 45(6): 67 doi: 10.11868/j.issn.1001-4381.2016.000979張浩, 黃新杰, 宗志芳, 等. 基于吸附性能的生物質基多孔活性炭制備方案的響應面法優化. 材料工程, 2017, 45(6):67 doi: 10.11868/j.issn.1001-4381.2016.000979 [19] Yang D. Space tube-shaped fitting slgorithm based on spatial Gauss-Newton method. J Dalian Univ, 2014, 35(3): 19 doi: 10.3969/j.issn.1008-2395.2014.03.005楊鐸. 基于Gauss-Newton法的空間管形擬合算法的研究. 大連大學學報, 2014, 35(3):19 doi: 10.3969/j.issn.1008-2395.2014.03.005 [20] Niu Z R, Liu Y, Li D H, et al. Optimization of sludge-based activated carbon preparation using response surface methodology. Acta Sci Circumstantiae, 2014, 34(12): 3022牛志睿, 劉羽, 李大海, 等. 響應面法優化制備污泥基活性炭. 環境科學學報, 2014, 34(12):3022 [21] Xu R R, Pang W Q, Yu J H, et al. Molecular Sieve Combined with Porous Merial Chemistry. Beijing: Science Press, 2004徐如人, 龐文琴, 于吉紅, 等. 分子篩與多孔材料化學. 北京: 科學出版社, 2004 [22] Kondo S, Ishikawa T, Abe I. Adsorption Sciences. 2nd Ed. Beijing: Chemical Industry Press, 2006近藤精一, 石川達雄, 安部郁夫. 吸附科學. 2版. 北京: 化學工業出版社, 2006 [23] Wang L C, Liu S S, Ma H H, et al. Activated carbon loaded MnO2 and its adsorption of formaldehyde. Appl Chem Ind, 2020, 49(5): 1110 doi: 10.3969/j.issn.1671-3206.2020.05.011王亮才, 劉沙沙, 馬歡歡, 等. 活性炭負載MnO2及其對甲醛的吸附. 應用化工, 2020, 49(5):1110 doi: 10.3969/j.issn.1671-3206.2020.05.011 [24] Biswas K, Gupta K, Goswami A, et al. Fluoride removal efficiency from aqueous solution by synthetic iron(III)-aluminum(III)-chromium(III) ternary mixed oxide. Desalination, 2010, 255(1-3): 44 doi: 10.1016/j.desal.2010.01.019 [25] Takaoka M, Yokokawa H, Takeda N. The effect of treatment of activated carbon by H2O2 or HNO3 on the decomposition of pentachlorobenzene. Appl Catal B Environ, 2007, 74(3-4): 179 doi: 10.1016/j.apcatb.2007.02.009 [26] Zhang H, Zhang L, Long H M. Spectroscopic analysis of preparation of ecological activated carbon based on electric furnace slag ultrafine powder modified biomass waste material. Spectrosc Spectr Anal, 2020, 40(3): 861張浩, 張磊, 龍紅明. 電爐渣超微粉改性生物質廢棄物制備生態活性炭的光譜學分析. 光譜學與光譜分析, 2020, 40(3):861 -