-
摘要: 浮選藥劑的結構對其性能具有重要影響,向現有藥劑中引入適宜的取代基,基于取代基效應實現藥劑浮選性能的改變,已成為高性能浮選藥劑開發的重要手段。為明確甲基對陽離子捕收劑浮選性能的影響,以十二胺(DDA)、N—十二烷基甲胺(MDA)、N,N—十二烷基二甲基叔胺(DMDA)、十二烷基三甲基氯化銨(DTAC)為樣本,通過浮選試驗考察了甲基取代基引入對藥劑捕收能力和浮選選擇性的影響規律,并基于藥劑靜電勢圖和極性基范德華體積的計算,明確了甲基對陽離子捕收劑浮選性能的影響機制。浮選試驗結果表明,隨著陽離子捕收劑中心原子中甲基的引入,石英和赤鐵礦單礦物的浮選回收率逐漸降低,但人工混合礦的分離指數升高。給電子基團甲基的引入,改變了陽離子捕收劑的電荷分布密度,促使中心原子上的電荷數增加,削弱了藥劑與礦物表面的靜電吸附強度,從而導致浮選回收率下降。同時,甲基引入后,陽離子捕收劑中極性基尺寸變大,從而增加了藥劑與礦物表面作用的空間位阻,增強了陽離子捕收劑的浮選選擇性。Abstract: With the implementation of carbon peak and carbon neutrality vision, an amine collector has been extensively applied in reverse flotation of bauxite, iron, and phosphate ores for desiliconization. Previous research indicates that the molecular structure of flotation reagents has a significant influence on their collecting performance and flotation selectivity. Regarding the substituent effect of organics, a method wherein a suitable substituent is inserted into existing reagents has been used to develop new high-performance flotation reagents. To clarify the effect of methyl on collection ability and flotation selectivity of cationic collectors, flotation separation of quartz and hematite has been conducted. C12 alkyl cationic surfactants such as dodecyl amine, dodecyl methylamine, N,N—dimethyl dodecyl amine, and dodecyl trimethyl ammonium chloride were selected as collectors. The active mechanism of methyl on the flotation performance of cationic collectors was also determined by calculating the electrostatic potential of the collectors and the van der Waals volume of its polar group. The collection abilities of cationic collectors were investigated by single mineral flotation. The results indicate that flotation recoveries of quartz and hematite are decreased with the insertion of a methyl group into central atom of a cationic collector. Further, the effect of methyl on selectivity of cationic collectors was investigated by flotation separation of artificially mixed quartz and hematite. The results revealed that the separation efficiency of artificially mixed quartz/hematite is increased gradually due to the drastic reduction in hematite flotation recovery rate. A methyl group is an electron donating group. The calculation and diagramming of electrostatic potential for selected collectors reveal that the charge distribution density of the cationic collector is varied by the introduction of an electron donating group. Consequently, the charge number of central atom is increased, thereby weakening the positive electrostatic potential of the atom and making the electrostatic adsorption strength between collector and mineral surface lower. Therefore, the flotation recovery rate decreased. Meanwhile, the size of a polar group for cationic collectors is enlarged by introducing the methyl group, thus increasing the steric hindrance of reagents and mineral surface interaction and resulting in an increase in flotation selectivity. With an increase in the methyl group number, the flotation separation efficiency of artificially mixed quartz and hematite becomes increasingly high. In the future, obtaining and quantifying correlation parameters of substituents and then explicating the relationship between substituent parameters and flotation performance of cationic collectors would be beneficial to establish a new design method for cationic collectors.
-
表 1 礦樣的化學成分(質量分數)
Table 1. Chemical composition of the sample
% Samples SiO2 Fe2O3 P2O5 CaO Al2O3 K2O MgO Quartz 99.72 0.15 0.01 0.01 0.08 0.01 0.02 Hematite 0.93 99.02 0.01 0.01 0.02 — 0.01 表 2 樣本捕收劑對人工混合礦分選結果
Table 2. Flotation separation results of the selected cationic collectors on artificially mixed minerals
Collectors Iron grade for concentrate/% Iron recovery for concentrate/% SE/% DDA 42.40 49.27 3.20 MDA 45.83 53.59 12.98 DMDA 52.03 61.03 30.73 DTAC 53.19 76.61 41.80 表 3 藥劑中心原子的電荷數
Table 3. Charge number of the central atom of the collectors
Collector DDA MDA DMDA DTAC Charge number of central atom (e) 0.307 0.328 0.344 0.347 表 4 元素范德華體積(VW)及共價鍵對體積的補正值(
$\Delta V_{\rm{W}}$ )Table 4. Van der Waals volume for some elements and its correction value of covalent
Element (covalent bond) C N H C—N C—H N—H VW(△VW)/nm3 0.0206 0.0141 0.0056 0.0065 0.0043 0.0038 www.77susu.com -
參考文獻
[1] Cao C Z. Substituent Effect in Organic Chemistry. 2nd Ed. Beijing: Science Press, 2019曹晨忠. 有機化學中的取代基效應. 2版. 北京: 科學出版社, 2019 [2] Zhang X R, Liu L L, Wu G Y, et al. An overview about the principle of the flotation reagent molecule design. Min Metall, 2013, 22(3): 25 doi: 10.3969/j.issn.1005-7854.2013.03.006張行榮, 劉龍利, 吳桂葉, 等. 浮選藥劑分子結構設計原理概述. 礦冶, 2013, 22(3):25 doi: 10.3969/j.issn.1005-7854.2013.03.006 [3] Liu C M, Feng A S, Guo Z X, et al. Flotation behavior of four dodecyl tertiary amines as collectors of diaspore and kaolinite. Min Sci Tec, 2011, 21(2): 249 [4] Ren A J, Sun C Y, Zhu Y G. Depressing capability of modified starches in the reverse flotation of quartz from hematite with cationic collectors. Chin J Eng, 2017, 39(12): 1815任愛軍, 孫傳堯, 朱陽戈. 變性淀粉在赤鐵礦陽離子反浮選脫硅中的抑制性能. 工程科學學報, 2017, 39(12):1815 [5] Yan Y W, Luo H H, Zhao J, et al. Application status and development prospect of amine collectors. Conserv Util Miner Resour, 2022, 42(2): 59 doi: 10.13779/j.cnki.issn1001-0076.2022.02.007閆雅雯, 羅惠華, 趙軍, 等. 胺類捕收劑的應用現狀及發展前景. 礦產保護與利用, 2022, 42(2):59 doi: 10.13779/j.cnki.issn1001-0076.2022.02.007 [6] Zhou B, Xu W, Chen Y, et al. Research progress of cationic collector in reverse flotation of phosphate ore. Conserv Util Miner Resour, 2016(3): 62 doi: 10.13779/j.cnki.issn1001-0076.2016.03.013周波, 徐偉, 陳躍, 等. 陽離子捕收劑在磷礦反浮選脫硅中的研究進展. 礦產保護與利用, 2016(3):62 doi: 10.13779/j.cnki.issn1001-0076.2016.03.013 [7] Ruan Y Y, He D S, Chi R. Review on beneficiation techniques and reagents used for phosphate ores. Minerals, 2019, 9(4): 253 doi: 10.3390/min9040253 [8] Ma J Y, Cheng D B. Challenges and opportunities of metallic mineral industry under the vision of carbon neutrality. Sci &Technol Rev, 2021, 39(19): 48馬靜玉, 程東波. 碳中和愿景下金屬礦產行業的挑戰與機遇. 科技導報, 2021, 39(19):48 [9] Liu G Y, Yang X L, Zhong H. Molecular design of flotation collectors: A recent progress. Adv Colloid Interface Sci, 2017, 246: 181 doi: 10.1016/j.cis.2017.05.008 [10] Liu X, Xie J G, Huang G Y, et al. Low-temperature performance of cationic collector undecyl propyl ether amine for ilmenite flotation. Miner Eng, 2017, 114: 50 doi: 10.1016/j.mineng.2017.09.005 [11] Xia L Y. Study on Flotation Characteristics and Adsorption Mechanism of the Aluminosilicate Minerals by a Class of bis-Quaternary Ammonium salt Gemini Collector [Dissertation]. Tianjin: Tianjin University, 2009夏柳蔭. 雙季銨鹽型Gemini捕收劑對鋁硅酸鹽礦物的浮選特性與機理研究[學位論文]. 天津: 天津大學, 2009 [12] Wu X Q, Cao Y C, Duan Y F. Effect of new cationic collector DHPA on froth characteristics and flotation performance of iron ore. Min Metall Eng, 2012, 32(6): 33伍喜慶, 曹玉川, 段云峰. 新型陽離子捕收劑DHPA的浮選及泡沫性能研究. 礦冶工程, 2012, 32(6):33 [13] Liu W B, Liu W G, Zhao Q, et al. Investigating the performance of a novel polyamine derivative for separation of quartz and hematite based on theoretical prediction and experiment. Sep Purif Technol, 2020, 237: 116370 doi: 10.1016/j.seppur.2019.116370 [14] Liu W B, Liu W G, Wei D Z, et al. Synthesis of N, N-Bis(2-hydroxypropyl)laurylamine and its flotation on quartz. Chem Eng J, 2017, 309: 63 doi: 10.1016/j.cej.2016.10.036 [15] Liu W B, Peng X Y, Liu W G, et al. Effect mechanism of the iso-propanol substituent on amine collectors in the flotation of quartz and magnesite. Powder Technol, 2020, 360: 1117 doi: 10.1016/j.powtec.2019.10.060 [16] Duan H, Liu W G, Wang X Y, et al. Effect of secondary amino on the adsorption of N-Dodecylethylenediamine on quartz surface: A molecular dynamics study. Powder Technol, 2019, 351: 46 doi: 10.1016/j.powtec.2019.04.009 [17] Yang X L, Liu S, Liu G Y, et al. A DFT study on the structure-reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors. J Ind Eng Chem, 2017, 46: 404 doi: 10.1016/j.jiec.2016.11.010 [18] Liu G Y, Zhong H, Xia L Y, et al. Improving copper flotation recovery from a refractory copper porphyry ore by using ethoxycarbonyl thiourea as a collector. Miner Eng, 2011, 24(8): 817 doi: 10.1016/j.mineng.2011.01.009 [19] Zhou Y F, Luo X M, Song S X, et al. Effect of four kinds of cationic collectors on flotation of hematite and quartz. Conserv Util Miner Resour, 2020, 40(2): 56 doi: 10.13779/j.cnki.issn1001-0076.2020.02.008周永鋒, 羅溪梅, 宋水祥, 等. 四種陽離子捕收劑對赤鐵礦和石英浮選行為的影響. 礦產保護與利用, 2020, 40(2):56 doi: 10.13779/j.cnki.issn1001-0076.2020.02.008 [20] Irannajad M, Mehdilo A, Nuri O S. Influence of microwave irradiation on ilmenite flotation behavior in the presence of different gangue minerals. Sep Purif Technol, 2014, 132(6): 401 [21] Li X B, Zhang Q, Hou B, et al. Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms. Powder Technol, 2017, 318: 224 doi: 10.1016/j.powtec.2017.06.003 [22] Libit L, Hoffmann R. Detailed orbital theory of substituent effects. Charge transfer, polarization, and the methyl group. J Am Chem Soc, 1974, 96(5): 1370 [23] Li R L. Structure-Activity Relationships of Drugs. Beijing: China Medical Science Press, 2004李仁利. 藥物構效關系. 北京: 中國醫藥科技出版社, 2004 [24] Medeiros A R S, Baltar C A M. Importance of collector chain length in flotation of fine particles. Miner Eng, 2018, 122: 179 doi: 10.1016/j.mineng.2018.03.008 [25] Wang D Z, Lin Q, Jiang Y R. Molecular Design of Reagents for Mineral and Metallurgical Processing. Changsha: Central South University Press, 1996王淀佐, 林強, 蔣玉仁. 選礦與冶金藥劑分子設計. 長沙: 中南大學出版社, 1996 [26] Cao C Z, Wu Y X. Recent progress of quantifying substituent effects. Sci Sin Chimica, 2013, 43(7): 801 doi: 10.1360/032012-452曹晨忠, 武亞新. 取代基效應定量研究新進展. 中國科學:化學, 2013, 43(7):801 doi: 10.1360/032012-452 [27] Wang D Z. Principle and Application of Flotation Reagents. Beijing: Metallurgical Industry Press, 1982王淀佐. 浮選劑作用原理及應用. 北京: 冶金工業出版社, 1982 -