<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

黃銅礦浮選體系晶態/無定形二氧化硅的流變特性與夾帶行為

王磊 李孟樂 鄒玉超 廖寅飛 馬子龍 桂夏輝

王磊, 李孟樂, 鄒玉超, 廖寅飛, 馬子龍, 桂夏輝. 黃銅礦浮選體系晶態/無定形二氧化硅的流變特性與夾帶行為[J]. 工程科學學報, 2023, 45(8): 1272-1280. doi: 10.13374/j.issn2095-9389.2022.06.28.001
引用本文: 王磊, 李孟樂, 鄒玉超, 廖寅飛, 馬子龍, 桂夏輝. 黃銅礦浮選體系晶態/無定形二氧化硅的流變特性與夾帶行為[J]. 工程科學學報, 2023, 45(8): 1272-1280. doi: 10.13374/j.issn2095-9389.2022.06.28.001
WANG Lei, LI Meng-le, ZOU Yu-chao, LIAO Yin-fei, MA Zi-long, GUI Xia-hui. Rheological properties and entrainment behavior of quartz/amorphous silica in chalcopyrite flotation[J]. Chinese Journal of Engineering, 2023, 45(8): 1272-1280. doi: 10.13374/j.issn2095-9389.2022.06.28.001
Citation: WANG Lei, LI Meng-le, ZOU Yu-chao, LIAO Yin-fei, MA Zi-long, GUI Xia-hui. Rheological properties and entrainment behavior of quartz/amorphous silica in chalcopyrite flotation[J]. Chinese Journal of Engineering, 2023, 45(8): 1272-1280. doi: 10.13374/j.issn2095-9389.2022.06.28.001

黃銅礦浮選體系晶態/無定形二氧化硅的流變特性與夾帶行為

doi: 10.13374/j.issn2095-9389.2022.06.28.001
基金項目: 國家自然科學基金資助項目(51804307)
詳細信息
    通訊作者:

    王磊,E-mail: lei.wang@cumt.edu.cn

    桂夏輝,E-mail: guixiahui1985@163.com

  • 中圖分類號: TD952

Rheological properties and entrainment behavior of quartz/amorphous silica in chalcopyrite flotation

More Information
  • 摘要: 硅酸鹽類脈石夾帶是制約貧雜難選礦高效浮選分離的難題之一。借助分批浮選試驗、流變學測試、冷凍掃描電鏡測試、顆粒沉降試驗,探究了黃銅礦浮選體系晶態/無定形二氧化硅的流變特性與夾帶行為。結果顯示,隨著脈石中無定形二氧化硅含量的增加,礦漿表觀黏度呈指數型增大,黃銅礦回收率持續降低,脈石回收率先升高后降低。脈石回收率發生變化是脈石夾帶率、水回收率共同作用的結果:在黏度低增長區,脈石夾帶率上移對脈石回收率升高起主導作用,而在黏度中、高增長區,水回收率減少是脈石回收率由升轉降的主要原因。總脈石夾帶率和各粒級脈石夾帶率均隨無定形二氧化硅含量增加而升高,且各粒級脈石夾帶率呈現出明顯差異性,細粒脈石夾帶率增幅最大。冷凍掃描電鏡與沉降試驗表明,無定形二氧化硅與石英顆粒形成了聚集體結構,導致礦漿體系黏度增大,因而脈石顆粒沉降減緩、泡沫排液“洗滌”脈石作用弱化,單位泡沫水中的脈石質量增大,脈石夾帶率升高。

     

  • 圖  1  礦物樣品的X射線衍射圖譜

    Figure  1.  X-ray diffraction patterns of the mineral samples

    圖  2  磨礦礦物粒度組成

    Figure  2.  Size distribution of the mineral samples after grinding

    圖  3  冷凍掃描電鏡構造示意圖

    Figure  3.  Schematic of the cryo-SEM structure

    圖  4  石英/無定形二氧化硅礦漿流變圖

    Figure  4.  Rheograms of the quartz/amorphous silica pulps

    圖  5  石英/無定形二氧化硅礦漿表觀黏度(剪切速率為100 s?1

    Figure  5.  Apparent viscosity of the quartz/amorphous silica pulps at a shear rate of 100 s?1

    圖  6  不同無定形二氧化硅含量下浮選脈石回收率與水回收率

    Figure  6.  Entrained gangue recoveries and water recoveries obtained from the flotation with different amorphous silica contents

    圖  7  脈石中無定形二氧化硅含量對水回收率的影響

    Figure  7.  Effect of the amorphous silica content in the gangue on water recovery

    圖  8  脈石中無定形二氧化硅含量對全粒級(a)和分粒級(b)夾帶率的影響

    Figure  8.  Effect of the amorphous silica content in the gangue on the degree of entrainment on a unsized (a) and size-by-size (b) basis

    圖  9  石英/無定形二氧化硅懸浮液的沉降行為

    Figure  9.  Settling of quartz/amorphous silica suspensions

    圖  10  石英/無定形二氧化硅懸浮液中顆粒形貌圖. (a) 石英; (b) 石英/無定形二氧化硅質量比為4∶1; (c) 石英/無定形二氧化硅質量比為3∶2; (d) 石英/無定形二氧化硅質量比為2∶3; (e) 石英/無定形二氧化硅質量比為1∶4; (f) 無定形二氧化硅

    Figure  10.  Cryo-SEM images of the quartz/amorphous silica particles in the suspensions∶ (a) quartz; (b) mass ratio of quartz to amorphous silica at 4∶1; (c) mass ratio of quartz to amorphous silica at 3∶2; (d) mass ratio of quartz to amorphous silica at 2∶3; (e) mass ratio of quartz to amorphous silica at 1∶4; (f) amorphous silica

    圖  11  無定形二氧化硅改變脈石夾帶率機理示意圖

    Figure  11.  Schematic of the mechanism for the amorphous silica particles changing the degree of entrainment

    圖  12  脈石中無定形二氧化硅含量對精礦銅品位、產率和黃銅礦回收率的影響

    Figure  12.  Effects of the amorphous silica content in the gangue on concentrate copper grade, yield, and chalcopyrite recovery

    表  1  浮選入料組成礦物

    Table  1.   Minerals used for the flotation feed

    Sample namePurity/%Manufacturer
    Chalcopyrite96Hubei Daye Copper Mine
    Quartz99Yijing Quartz Sand Factory
    Amorphous silica99Aladdin Biochemical Technology
    下載: 導出CSV

    表  2  浮選試驗藥劑

    Table  2.   Reagents used in the flotation tests

    Sample namePurityManufacturer
    Sodium ethyl xanthate90%Aladdin Biochemical Technology Co., Ltd.
    Methyl isobutyl carbinolAnalytically pureSinopharm Chemical Reagent Co., Ltd.
    Sodium carbonateAnalytically pureSinopharm Chemical Reagent Co., Ltd.
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Northey S, Mohr S, Mudd G M, et al. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour Conserv Recycl, 2014, 83: 190 doi: 10.1016/j.resconrec.2013.10.005
    [2] Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003
    [3] Wang C, Sun C B, Liu Q. Entrainment of gangue minerals in froth flotation: Mechanisms, models, controlling factors, and abatement techniques—a review. Min Metall Explor, 2021, 38(2): 673
    [4] Li H Q, Zheng H F, Ge W, et al. A review of froth entrainment in flotation process. Met Mine, 2018(12): 67 doi: 10.19614/j.cnki.jsks.201812012

    李洪強, 鄭惠方, 戈武, 等. 浮選過程中的泡沫夾帶研究進展. 金屬礦山, 2018(12):67 doi: 10.19614/j.cnki.jsks.201812012
    [5] Lu Y, Li H Q, Feng Q M. Entrainment behavior and control of sericite. J Central South Univ Sci Technol, 2015, 46(1): 20

    陸英, 李洪強, 馮其明. 絹云母的夾帶行為及其控制. 中南大學學報(自然科學版), 2015, 46(1):20
    [6] Yang B, Yin W Z, Fu Y F, et al. Effect of citric acid on entrainment behavior of fine chlorite. J Northeast Univ Nat Sci, 2019, 40(4): 569 doi: 10.12068/j.issn.1005-3026.2019.04.022

    楊斌, 印萬忠, 付亞峰, 等. 檸檬酸對微細粒綠泥石夾帶行為的影響. 東北大學學報(自然科學版), 2019, 40(4):569 doi: 10.12068/j.issn.1005-3026.2019.04.022
    [7] Yu Y X, Ma L Q, Zhang Z L, et al. Mechanism of entrainment and slime coating on coal flotation. J China Coal Soc, 2015, 40(3): 652 doi: 10.13225/j.cnki.jccs.2014.0605

    于躍先, 馬力強, 張仲玲, 等. 煤泥浮選過程中的細泥夾帶與罩蓋機理. 煤炭學報, 2015, 40(3):652 doi: 10.13225/j.cnki.jccs.2014.0605
    [8] Ndlovu B, Farrokhpay S, Bradshaw D. The effect of phyllosilicate minerals on mineral processing industry. Int J Miner Process, 2013, 125: 149 doi: 10.1016/j.minpro.2013.09.011
    [9] Sun Z J, Wu X Q, Li C B, et al. A summary of high content slime ore flotation. Nonferrous Met, 2020(1): 59

    孫志健, 吳熙群, 李成必, 等. 高含泥礦石浮選綜述. 有色金屬(選礦部分), 2020(1):59
    [10] Jeldres R I, Uribe L, Cisternas L A, et al. The effect of clay minerals on the process of flotation of copper ores?A critical review. Appl Clay Sci, 2019, 170: 57 doi: 10.1016/j.clay.2019.01.013
    [11] Zheng X, Johnson N W, Franzidis J P. Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Miner Eng, 2006, 19(11): 1191 doi: 10.1016/j.mineng.2005.11.005
    [12] Ndlovu B, Becker M, Forbes E, et al. The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Miner Eng, 2011, 24(12): 1314 doi: 10.1016/j.mineng.2011.05.008
    [13] Chen X M, Hadde E, Liu S Q, et al. The effect of amorphous silica on pulp rheology and copper flotation. Miner Eng, 2017, 113: 41 doi: 10.1016/j.mineng.2017.08.001
    [14] Wang L, Peng Y, Runge K. Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technol, 2016, 288: 202 doi: 10.1016/j.powtec.2015.10.049
    [15] Meng J, Tabosa E, Xie W G, et al. A review of turbulence measurement techniques for flotation. Miner Eng, 2016, 95: 79 doi: 10.1016/j.mineng.2016.06.007
    [16] Ralston J, Fornasiero D, Grano S, et al. Reducing uncertainty in mineral flotation—Flotation rate constant prediction for particles in an operating plant ore. Int J Miner Process, 2007, 84(1-4): 89 doi: 10.1016/j.minpro.2006.08.010
    [17] Loosdrecht M C M, Nielsen P H, Lopez-Vazquez C M, et al. Experimental Methods in Wastewater Treatment. London: IWA Publishing, 2016
    [18] Zhang M, Peng Y J, Xu N. The effect of sea water on copper and gold flotation in the presence of bentonite. Miner Eng, 2015, 77: 93 doi: 10.1016/j.mineng.2015.03.006
    [19] Yianatos J, Contreras F, Díaz F, et al. Direct measurement of entrainment in large flotation cells. Powder Technol, 2009, 189(1): 42 doi: 10.1016/j.powtec.2008.05.013
    [20] Wang L, Runge K, Peng Y. The observed effect of flotation operating conditions and particle properties on water recovery at laboratory scale. Miner Eng, 2016, 94: 83 doi: 10.1016/j.mineng.2016.05.003
    [21] Neethling S J, Lee H T, Cilliers J J. Simple relationships for predicting the recovery of liquid from flowing foams and froths. Miner Eng, 2003, 16(11): 1123 doi: 10.1016/j.mineng.2003.06.014
    [22] Nguyen A V, Harvey P A, Jameson G J. Influence of gas flow rate and frothers on water recovery in a froth column. Miner Eng, 2003, 16(11): 1143 doi: 10.1016/j.mineng.2003.09.005
    [23] Melo F, Laskowski J S. Effect of frothers and solid particles on the rate of water transfer to froth. Int J Miner Process, 2007, 84(1-4): 33 doi: 10.1016/j.minpro.2007.04.003
    [24] Wang L, Li C. A brief review of pulp and froth rheology in mineral flotation. J Chem, 2020, 2020: 3894542
    [25] Yang B, Yin W Z, Zhu Z L, et al. A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder Technol, 2019, 354: 358 doi: 10.1016/j.powtec.2019.06.017
    [26] Raghavan S R, Walls H J, Khan S A. Rheology of silica dispersions in organic liquids: New evidence for solvation forces dictated by hydrogen bonding. Langmuir, 2000, 16(21): 7920 doi: 10.1021/la991548q
  • 加載中
圖(12) / 表(2)
計量
  • 文章訪問數:  283
  • HTML全文瀏覽量:  123
  • PDF下載量:  72
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-06-28
  • 網絡出版日期:  2022-09-06
  • 刊出日期:  2023-08-25

目錄

    /

    返回文章
    返回