Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism
-
摘要: 充填體強度對安全高效采礦至關重要,而膠凝材料是獲得高強度充填體的關鍵。本文以工業固廢為原料,首先借助D-optimal設計方法通過建立強度回歸模型和因素影響分析得到礦渣激發劑最佳配比,然后通過礦渣摻量優化試驗獲得最佳礦渣摻量,進而獲得膠凝材料完整配比;并以水泥為參照,借助X射線衍射儀和掃描電鏡從水化產物和充填體微觀結構揭示充填體強度形成機制。結果表明:(1)激發劑各組分對礦渣敏感順序為:氫氧化鈉﹥熟石灰﹥脫硫石膏﹥硫酸鈉,且相互之間存在不同程度的交互作用;(2)在最佳質量配比(礦渣85.00%,熟石灰8.03%,硫酸鈉3.96%,脫硫石膏1.85%,氫氧化鈉1.16%)下,可獲得超過單一水泥3.5倍的早期(1~3 d)強度和2倍的后期(7~28 d)強度;(3)高強度充填體的形成主要與水化產物鈣礬石(AFt)和C–S–H有關,鈣礬石在早期快速成核與生長,形成有效物理填充作用是形成較高早期強度的主要原因,后期強度則得益于不斷累積的C–S–H的包裹黏結作用,使充填體結構進一步致密化。使用該固廢基膠凝材料有助于礦山安全采礦;工業固廢質量占比86.85%,協同解決了尾砂、礦渣、脫硫石膏等固廢;D-optimal設計方法可用于激發劑等多物料混合物的配比設計和因素作用分析。
-
關鍵詞:
- 尾砂膠結充填 /
- 膠凝材料 /
- D-optimal混料設計方法 /
- 水化 /
- 抗壓強度
Abstract: The key to obtaining high-strength backfill is the cementing material used for backfilling. Therefore, to prepare a new slag-based binder for cemented tailings backfill, hydrated lime, desulfurized gypsum, sodium sulfate, and sodium hydroxide were selected as slag activators. Firstly, the D-optimal mixture design method was used to develop the strength regression model, analyze the influence of hydrated lime, desulfurized gypsum, sodium sulfate, and sodium hydroxide on the strength, and determine the best ratio of slag activator. Secondly, after optimizing the slag content, the optimum proportion of the binder was obtained. Lastly, X-ray diffraction and scanning electron microscopy were used to study the internal mechanism of the hydration products of the slag-based binder, the microstructure of backfill, and strength formation. The results show that the D-optimal mixture design method is a good method of obtaining the formula of the mixture with a less experimental amount. The sensitivity order to slag is sodium hydroxide > hydrated lime > desulfurized gypsum > sodium sulfate, and there are different degrees of interaction, so the weighing accuracy should be considered when batching. At the optimum mass ratio of binder (slag 85.00%, slaked lime 8.03%, sodium sulfate 3.96%, desulfurized gypsum 1.85%, and sodium hydroxide 1.16%), the early strength (1–3 d) is 3.5 times higher than that of cement, and the late strength (7–28 d) is at least two times higher than that of cement. The increased strength of hardened backfill cemented is closely related to ettringite (AFt) and C–S–H, the two primary hydration products of the new slag-based binder. During the early stages of hydration, a large amount of AFt rapidly nucleated on the surface of the slag, the distance between the tailing particles provided plenty of space for ettringite growth, and its long prismatic structure continuously extended into the intergranular pores. The rapid formation of early strength of backfill is primarily because of the physical filling effect of ettringite. In the later stage, the strength of the backfill is primarily attributed to the wrapping and bonding effect of C–S–H, which further optimizes the compact structure of the backfill. The high-strength backfill can be obtained using the new slag-based cementitious material, which is of great significance for safe and efficient mining. The slag-based binder that contains 86.94% (mass fraction) of industrial solid waste helps solve the problem of desulfurized gypsum of coal-fired power plants and mine tailings. Additionally, the D-optimal mixture design proved to be an effective method for designing and optimizing the ratio of multicomponent materials, such as binders and activator components.-
Key words:
- cemented tailings backfill /
- binder /
- D-optimal mixing design method /
- hydration /
- compressive strength
-
圖 9 礦渣基堿激發膠凝材料(a)和OPC制備(b)凈漿樣品水化3 d和14 d的XRD譜圖(H—氫氧化鈣;E—鈣礬石(AFt);R—水化硅酸鈣(C–S–H);Z—針硅鈣石;C—碳酸鈣;Q—石英;G—GaSO4·2H2O;A—鋁酸三鈣; F—鐵鋁酸四鈣;D—硅酸二鈣;B—半水硫酸鈣;T—硅酸三鈣)
Figure 9. XRD patterns of paste sample prepared using a new alkali-activated slag-based binder (a) and cement (b) after hydration for 3 and 14 d (H—Calcium hydroxide; E—Ettringite (AFt); R—Calcium silicate hydrate (C–S–H); Z—Hillebrandite; C—Calcium carbonate; Q—Quartz; G—Gypsum; A—Calcium aluminate; F—Tetracalcium aluminoferrite; D—Dicalcium silicate; B—Hemihydrate gypsum; T—Tricalcium silicate)
圖 10 新型膠凝材料和OPC制備充填體內部微觀形貌對比。(a)新型膠凝材料樣品,養護3 d;(b)新型膠凝材料樣品,養護14 d;(c) OPC樣品,養護3 d;(d) OPC樣品,養護14 d
Figure 10. Comparison of the internal morphology of backfill prepared using the new binder and cement: (a) new binder sample, cured for 3 d; (b) new binder sample, cured for 14 d; (c) cement sample, cured for 3 d; (d) cement sample, cured for 14 d
表 1 固體材料化學組成(質量分數)
Table 1. Chemical compositions of solid materials by mass
% Solid material CaO SiO2 Al2O3 MgO SO3 Na2O TiO2 Fe2O3 K2O MnO P2O5 Tailings 2.72 70.70 15.00 1.10 0.27 3.52 0.15 1.28 4.93 0.04 0.06 Slag 39.80 27.30 14.50 11.40 2.50 — 1.07 0.24 0.27 0.33 0.02 Desulfurized gypsum 41.98 2.86 1.34 2.48 51.03 — — 0.41 0.14 — 0.02 OPC 50.34 24.21 8.94 6.64 4.01 0.86 0.38 2.34 1.21 0.21 0.06 表 2 D-optimal設計方案及強度結果
Table 2. Scheme and strength results of D-optimal mixture design
Order Mass fraction / % Mean strength-7 d/MPa Slag A: Hydrated lime B: Sodium sulfate C: Desulfurized gypsum D: Sodium hydroxide 1 60 19.47 14.51 5.00 1.02 1.87 2 60 15.00 19.00 1.00 5.00 1.91 3 60 20.19 12.13 3.16 4.52 2.28 4 60 26.34 5.00 5.00 3.66 2.40 5 60 25.72 10.67 1.00 2.61 2.18 6 60 15.84 14.16 5.00 5.00 2.34 7 60 13.83 20.00 3.34 2.83 2.30 8 60 33.00 5.00 1.00 1.00 1.96 9 60 12.16 17.84 5.00 5.00 2.05 10 60 13.83 20.00 3.34 2.83 2.24 11 60 21.80 16.20 1.00 1.00 2.17 12 60 20.19 12.13 3.16 4.52 2.24 13 60 26.34 5.00 5.00 3.66 2.44 14 60 18.05 19.95 1.00 1.00 2.30 15 60 20.19 12.13 3.16 4.52 2.24 16 60 23.21 10.81 4.98 1.00 2.32 17 60 25.72 10.67 1.00 2.61 2.06 18 60 29.17 7.10 2.73 1.00 2.00 19 60 23.01 8.19 3.80 5.00 2.14 20 60 29.00 5.00 1.00 5.00 1.90 表 3 方差分析結果
Table 3. Results of variance analysis
Source Sum of squares Degree of freedom Mean square F-value P-value Remark Model 0.5539 13 0.0426 17.41 0.0011 Significant Linear mixture 0.1058 3 0.0353 14.41 0.0038 — AB 0.0006 1 0.0006 0.2461 0.6375 — AC 0.0018 1 0.0018 0.7254 0.4271 — AD 0.0625 1 0.0625 25.52 0.0023 — BC 0.0237 1 0.0237 9.70 0.0207 — BD 0.0501 1 0.0501 20.45 0.0040 — CD 0.0084 1 0.0084 3.42 0.1138 — ABC 0.0528 1 0.0528 21.56 0.0035 — ABD 0.0252 1 0.0252 10.28 0.0185 — ACD 0.0001 1 0.0001 0.0529 0.8257 — BCD 0.0048 1 0.0048 1.98 0.2094 — Residual 0.0147 6 0.0024 — — — Lack of fit 0.0038 1 0.0038 1.76 0.2423 Not significant Corrected total 0.5686 19 — — — — 表 4 優化組合及其期望值
Table 4. Optimized combination and its expected value
Order Optimized combination/% Predicted value/MPa Expected value/MPa A B C D 1 21.42 10.57 4.92 3.09 3.02 0.865 2 19.77 13.00 4.28 2.96 2.93 0.796 3 24.69 9.00 3.50 2.81 2.86 0.743 表 5 驗證試驗及其結果
Table 5. Optimized combination and its expected value
Order Optimized combination/% Predicted value/MPa Actual value/MPa Deviation/% A B C D 1 21.42 10.57 4.92 3.09 3.02 2.72 9.93 2 19.77 13.00 4.28 3.09 2.93 2.55 13.00 3 24.69 9.00 3.50 3.09 2.86 2.49 12.87 www.77susu.com -
參考文獻
[1] Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1 doi: 10.19614/j.cnki.jsks.202101001吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1 doi: 10.19614/j.cnki.jsks.202101001 [2] Shen Z X, Zhang Q, Chen D L, et al. Varying effects of mining development on ecological conditions and groundwater storage in dry region in Inner Mongolia of China. J Hydrol, 2021, 597: 125759 doi: 10.1016/j.jhydrol.2020.125759 [3] Ruan Z E, Wu A X, Wang Y M, et al. Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste. Chin J Eng, 2022, 44(4): 496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004阮竹恩, 吳愛祥, 王貽明, 等. 全固廢膏體關鍵性能指標的多目標優化. 工程科學學報, 2022, 44(4):496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004 [4] Yang C H, Zhang C, Li Q M, et al. Disaster mechanism and prevention methods of large-scale high tailings dam. Rock Soil Mech, 2021, 42(1): 1 doi: 10.16285/j.rsm.2020.1653楊春和, 張超, 李全明, 等. 大型高尾礦壩災變機制與防控方法. 巖土力學, 2021, 42(1):1 doi: 10.16285/j.rsm.2020.1653 [5] Amari K E, Hibti M. A comparison between kinetic test results and natural weathering: The abandoned kettara mine tailings pond. Mine Water Environ, 2020, 39(1): 157 doi: 10.1007/s10230-019-00642-0 [6] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417 [7] Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002 [8] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517 [9] Benzaazoua M, Fall M, Belem T. A contribution to understanding the hardening process of cemented pastefill. Miner Eng, 2004, 17(2): 141 doi: 10.1016/j.mineng.2003.10.022 [10] Yu R C. Theory and Engineering Practice of Metal Cemented Filling in Mines. Beijing: Metallurgical Industry Press, 2020于潤滄. 金屬礦山膠結充填理論與工程實踐. 北京: 冶金工業出版社, 2020 [11] Wu A X, Wang H J. Theory and Technology of Metal Paste Filling. Beijing: Science Press, 2015吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015 [12] Tariq A, Yanful E K. A review of binders used in cemented paste tailings for underground and surface disposal practices. J Environ Manag, 2013, 131: 138 doi: 10.1016/j.jenvman.2013.09.039 [13] Xu W B, Li Q L, Liu B. Coupled effect of curing temperature and age on compressive behavior, microstructure and ultrasonic properties of cemented tailings backfill. Constr Build Mater, 2020, 237: 117738 doi: 10.1016/j.conbuildmat.2019.117738 [14] Aprianti E, Shafigh P, Bahri S, et al. Supplementary cementitious materials origin from agricultural wastes - A review. Constr Build Mater, 2015, 74: 176 doi: 10.1016/j.conbuildmat.2014.10.010 [15] Qiu J P, Guo Z B, Yang L, et al. Effect of tailings fineness on flow, strength, ultrasonic and microstructure characteristics of cemented paste backfill. Constr Build Mater, 2020, 263: 120645 doi: 10.1016/j.conbuildmat.2020.120645 [16] Jiang G Z, Wu A X, Wang Y M. Curing performance of alkali-activated cement-phosphorous slag and its compatibility with sulfur tailings. Chin J Eng, 2020, 42(8): 963姜關照, 吳愛祥, 王貽明. 堿激發水泥–磷渣固化性能及與含硫尾砂的相容性. 工程科學學報, 2020, 42(8):963 [17] Zhang Y J, Yang M Y, Kang L, et al. Research progresses of new type alkali–activated cementitious material catalyst. J Inorg Mater, 2016, 31(3): 225 doi: 10.15541/jim20150412張耀君, 楊夢陽, 康樂, 等. 一類新型堿激發膠凝材料催化劑的研究進展. 無機材料學報, 2016, 31(3):225 doi: 10.15541/jim20150412 [18] Wu P, Wang J X, Hu S G, et al. Preparation and performance of slag-based binders for the cementation of fine tailings. J Adhesion Sci Technol, 2018, 32(9): 976 doi: 10.1080/01694243.2017.1394034 [19] Wang H F, Yan H D, Yang W. Properties of alkali-activated fly-ash and cement recycled asphalt concrete. Eng J Wuhan Univ, 2019, 52(6): 504 doi: 10.14188/j.1671-8844.2019-06-005王海峰, 嚴捍東, 楊偉. 堿激發粉煤灰水泥再生瀝青混凝土性能研究. 武漢大學學報(工學版), 2019, 52(6):504 doi: 10.14188/j.1671-8844.2019-06-005 [20] Rashad A M. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—A guide for Civil Engineer. Constr Build Mater, 2013, 47: 29 doi: 10.1016/j.conbuildmat.2013.04.011 [21] Wen Z J. Study on Preparation and Application of Binder with Steel Slag and Slag for the Cemented Superfine Tailings Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2022溫震江. 鋼渣協同礦渣制備超細尾砂充填膠結料及應用研究[學位論文]. 北京: 北京科技大學, 2022 [22] Xu X H, He M Z. Experiment and Application of Design-Expert and SPSS. Beijing: Science Press, 2010徐向宏, 何明珠. 試驗設計與Design-Expert、SPSS應用. 北京: 科學出版社, 2010 [23] Arroyo-López F N, Bautista-Gallego J, Chiesa A, et al. Use of a D-optimal mixture design to estimate the effects of diverse chloride salts on the growth parameters of Lactobacillus pentosus. Food Microbiol, 2009, 26(4): 396 doi: 10.1016/j.fm.2009.01.009 [24] Yeom D W, Song Y S, Kim S R, et al. Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design. Int J Nanomedicine, 2015, 10: 3865 [25] Guo J Y, Hao C L, Wang L S, et al. Optimization of flotation agents of long-flame coal by D-optimal mixture design. J China Coal Soc, 2019, 44(6): 1883 doi: 10.13225/j.cnki.jccs.2018.0968郭金玉, 郝成亮, 王靈雙, 等. 基于D-最優混料設計的長焰煤浮選藥劑的優化. 煤炭學報, 2019, 44(6):1883 doi: 10.13225/j.cnki.jccs.2018.0968 [26] Zheng W Z, Zou M N, Wang Y. Research progress of alkali-activated cementitious materials. J Build Struct, 2019, 40(1): 28 doi: 10.14006/j.jzjgxb.2019.01.003鄭文忠, 鄒夢娜, 王英. 堿激發膠凝材料研究進展. 建筑結構學報, 2019, 40(1):28 doi: 10.14006/j.jzjgxb.2019.01.003 [27] Yang Z Q, Gao Q, Wang Y Q, et al. Experimental study on new filling cementing material using water-hardening nickel slag tailings of Jinchuan Mine. Chin J Geotech Eng, 2014, 36(8): 1498 doi: 10.11779/CJGE201408016楊志強, 高謙, 王永前, 等. 利用金川水淬鎳渣尾砂開發新型充填膠凝劑試驗研究. 巖土工程學報, 2014, 36(8):1498 doi: 10.11779/CJGE201408016 [28] Mi G D. Studies on the Hydration Performance of Complex Cementitious Materials [Dissertation]. Beijing: Tsinghua University, 2016米貴東. 多組分復合膠凝材料體系水化性能研究[學位論文]. 北京: 清華大學, 2016 [29] Rashad A M. An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr Build Mater, 2018, 187: 89 doi: 10.1016/j.conbuildmat.2018.07.150 [30] Cui C, Peng H, Liu Y, et al. Influence of GGBFS content and activator modulus on curing of metakaolin based geopolymer at ambient temperature. J Build Mater, 2017, 20(4): 535 doi: 10.3969/j.issn.1007-9629.2017.04.008崔潮, 彭暉, 劉揚, 等. 礦渣摻量及激發劑模數對偏高嶺土基地聚物常溫固化的影響. 建筑材料學報, 2017, 20(4):535 doi: 10.3969/j.issn.1007-9629.2017.04.008 [31] Song S J, Jennings H M. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem Concr Res, 1999, 29(2): 159 doi: 10.1016/S0008-8846(98)00212-9 [32] Han F H, Wang D M, Yan P Y. Hydration kinetics of composite binder containing different content of slag or fly ash. J Chin Ceram Soc, 2014, 42(5): 613 doi: 10.7521/j.issn.0454-5648.2014.05.10韓方暉, 王棟民, 閻培渝. 含不同摻量礦渣或粉煤灰的復合膠凝材料的水化動力學. 硅酸鹽學報, 2014, 42(5):613 doi: 10.7521/j.issn.0454-5648.2014.05.10 [33] Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457劉娟紅, 周在波, 吳愛祥, 等. 低濃度拜耳赤泥充填材料制備及水化機理. 工程科學學報, 2020, 42(11):1457 [34] Brough A R, Holloway M, Sykes J, et al. Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid. Cem Concr Res, 2000, 30(9): 1375 [35] Zhang J, Shi C J, Zhang Z H, et al. Durability of alkali-activated materials in aggressive environments: A review on recent studies. Constr Build Mater, 2017, 152: 598 doi: 10.1016/j.conbuildmat.2017.07.027 -