<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

固廢基充填膠凝材料配比分步優化及其水化膠結機理

朱庚杰 朱萬成 齊兆軍 侯晨

朱庚杰, 朱萬成, 齊兆軍, 侯晨. 固廢基充填膠凝材料配比分步優化及其水化膠結機理[J]. 工程科學學報, 2023, 45(8): 1304-1315. doi: 10.13374/j.issn2095-9389.2022.06.24.001
引用本文: 朱庚杰, 朱萬成, 齊兆軍, 侯晨. 固廢基充填膠凝材料配比分步優化及其水化膠結機理[J]. 工程科學學報, 2023, 45(8): 1304-1315. doi: 10.13374/j.issn2095-9389.2022.06.24.001
ZHU Geng-jie, ZHU Wan-cheng, QI Zhao-jun, HOU Chen. Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1304-1315. doi: 10.13374/j.issn2095-9389.2022.06.24.001
Citation: ZHU Geng-jie, ZHU Wan-cheng, QI Zhao-jun, HOU Chen. Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1304-1315. doi: 10.13374/j.issn2095-9389.2022.06.24.001

固廢基充填膠凝材料配比分步優化及其水化膠結機理

doi: 10.13374/j.issn2095-9389.2022.06.24.001
基金項目: 國家自然科學基金資助項目(51904055,U1906208,51874069)
詳細信息
    通訊作者:

    E-mail: zhuwancheng@mail.neu.edu.cn

  • 中圖分類號: TD926.4

Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism

More Information
  • 摘要: 充填體強度對安全高效采礦至關重要,而膠凝材料是獲得高強度充填體的關鍵。本文以工業固廢為原料,首先借助D-optimal設計方法通過建立強度回歸模型和因素影響分析得到礦渣激發劑最佳配比,然后通過礦渣摻量優化試驗獲得最佳礦渣摻量,進而獲得膠凝材料完整配比;并以水泥為參照,借助X射線衍射儀和掃描電鏡從水化產物和充填體微觀結構揭示充填體強度形成機制。結果表明:(1)激發劑各組分對礦渣敏感順序為:氫氧化鈉﹥熟石灰﹥脫硫石膏﹥硫酸鈉,且相互之間存在不同程度的交互作用;(2)在最佳質量配比(礦渣85.00%,熟石灰8.03%,硫酸鈉3.96%,脫硫石膏1.85%,氫氧化鈉1.16%)下,可獲得超過單一水泥3.5倍的早期(1~3 d)強度和2倍的后期(7~28 d)強度;(3)高強度充填體的形成主要與水化產物鈣礬石(AFt)和C–S–H有關,鈣礬石在早期快速成核與生長,形成有效物理填充作用是形成較高早期強度的主要原因,后期強度則得益于不斷累積的C–S–H的包裹黏結作用,使充填體結構進一步致密化。使用該固廢基膠凝材料有助于礦山安全采礦;工業固廢質量占比86.85%,協同解決了尾砂、礦渣、脫硫石膏等固廢;D-optimal設計方法可用于激發劑等多物料混合物的配比設計和因素作用分析。

     

  • 圖  1  尾砂、礦渣、脫硫石膏、熟石灰和OPC的粒徑分布

    Figure  1.  Particle size distribution of tailings, slag, desulfurized gypsum, hydrated lime, and cement

    圖  2  主要固體粉料的XRD譜圖。(a) 尾砂;(b) 礦渣;(c) OPC

    Figure  2.  XRD patterns of main solid materials: (a) tailings; (b) slag; (c) OPC

    圖  3  尾砂微觀形貌

    Figure  3.  Micromorphology of tailings

    圖  4  殘差正態圖

    Figure  4.  Normal plot of residuals

    圖  5  熟石灰、硫酸鈉、脫硫石膏和氫氧化鈉對充填體強度的影響

    Figure  5.  Influence of hydrated lime, sodium sulfate, desulfurized gypsum, and sodium hydroxide on the strength of cemented backfill

    圖  6  不同原料配比對強度的影響

    Figure  6.  Influence of different raw material ratios on strength

    圖  7  礦渣摻量對尾砂充填體強度的影響

    Figure  7.  Effect of slag dosage on strength of cemented tailings backfill

    圖  8  使用OPC和新型膠凝材料制備充填體的強度對比

    Figure  8.  Strength comparison between backfill prepared with OPC and new binder

    圖  9  礦渣基堿激發膠凝材料(a)和OPC制備(b)凈漿樣品水化3 d和14 d的XRD譜圖(H—氫氧化鈣;E—鈣礬石(AFt);R—水化硅酸鈣(C–S–H);Z—針硅鈣石;C—碳酸鈣;Q—石英;G—GaSO4·2H2O;A—鋁酸三鈣; F—鐵鋁酸四鈣;D—硅酸二鈣;B—半水硫酸鈣;T—硅酸三鈣)

    Figure  9.  XRD patterns of paste sample prepared using a new alkali-activated slag-based binder (a) and cement (b) after hydration for 3 and 14 d (H—Calcium hydroxide; E—Ettringite (AFt); R—Calcium silicate hydrate (C–S–H); Z—Hillebrandite; C—Calcium carbonate; Q—Quartz; G—Gypsum; A—Calcium aluminate; F—Tetracalcium aluminoferrite; D—Dicalcium silicate; B—Hemihydrate gypsum; T—Tricalcium silicate)

    圖  10  新型膠凝材料和OPC制備充填體內部微觀形貌對比。(a)新型膠凝材料樣品,養護3 d;(b)新型膠凝材料樣品,養護14 d;(c) OPC樣品,養護3 d;(d) OPC樣品,養護14 d

    Figure  10.  Comparison of the internal morphology of backfill prepared using the new binder and cement: (a) new binder sample, cured for 3 d; (b) new binder sample, cured for 14 d; (c) cement sample, cured for 3 d; (d) cement sample, cured for 14 d

    表  1  固體材料化學組成(質量分數)

    Table  1.   Chemical compositions of solid materials by mass %

    Solid materialCaOSiO2Al2O3MgOSO3Na2OTiO2Fe2O3K2OMnOP2O5
    Tailings2.7270.7015.001.100.273.520.151.284.930.040.06
    Slag39.8027.3014.5011.402.501.070.240.270.330.02
    Desulfurized gypsum41.982.861.342.4851.030.410.140.02
    OPC50.3424.218.946.644.010.860.382.341.210.210.06
    下載: 導出CSV

    表  2  D-optimal設計方案及強度結果

    Table  2.   Scheme and strength results of D-optimal mixture design

    OrderMass fraction / %Mean strength-7 d/MPa
    SlagA: Hydrated limeB: Sodium sulfateC: Desulfurized gypsumD: Sodium hydroxide
    16019.4714.515.001.021.87
    26015.0019.001.005.001.91
    36020.1912.133.164.522.28
    46026.345.005.003.662.40
    56025.7210.671.002.612.18
    66015.8414.165.005.002.34
    76013.8320.003.342.832.30
    86033.005.001.001.001.96
    96012.1617.845.005.002.05
    106013.8320.003.342.832.24
    116021.8016.201.001.002.17
    126020.1912.133.164.522.24
    136026.345.005.003.662.44
    146018.0519.951.001.002.30
    156020.1912.133.164.522.24
    166023.2110.814.981.002.32
    176025.7210.671.002.612.06
    186029.177.102.731.002.00
    196023.018.193.805.002.14
    206029.005.001.005.001.90
    下載: 導出CSV

    表  3  方差分析結果

    Table  3.   Results of variance analysis

    SourceSum of squaresDegree of freedomMean squareF-valueP-valueRemark
    Model0.5539130.042617.410.0011Significant
    Linear mixture0.105830.035314.410.0038
    AB0.000610.00060.24610.6375
    AC0.001810.00180.72540.4271
    AD0.062510.062525.520.0023
    BC0.023710.02379.700.0207
    BD0.050110.050120.450.0040
    CD0.008410.00843.420.1138
    ABC0.052810.052821.560.0035
    ABD0.025210.025210.280.0185
    ACD0.000110.00010.05290.8257
    BCD0.004810.00481.980.2094
    Residual0.014760.0024
    Lack of fit0.003810.00381.760.2423Not significant
    Corrected total0.568619
    下載: 導出CSV

    表  4  優化組合及其期望值

    Table  4.   Optimized combination and its expected value

    OrderOptimized combination/%Predicted value/MPaExpected value/MPa
    ABCD
    121.4210.574.923.093.020.865
    219.7713.004.282.962.930.796
    324.699.003.502.812.860.743
    下載: 導出CSV

    表  5  驗證試驗及其結果

    Table  5.   Optimized combination and its expected value

    OrderOptimized combination/%Predicted value/MPaActual value/MPaDeviation/%
    ABCD
    121.4210.574.923.093.022.729.93
    219.7713.004.283.092.932.5513.00
    324.699.003.503.092.862.4912.87
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1 doi: 10.19614/j.cnki.jsks.202101001

    吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1 doi: 10.19614/j.cnki.jsks.202101001
    [2] Shen Z X, Zhang Q, Chen D L, et al. Varying effects of mining development on ecological conditions and groundwater storage in dry region in Inner Mongolia of China. J Hydrol, 2021, 597: 125759 doi: 10.1016/j.jhydrol.2020.125759
    [3] Ruan Z E, Wu A X, Wang Y M, et al. Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste. Chin J Eng, 2022, 44(4): 496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004

    阮竹恩, 吳愛祥, 王貽明, 等. 全固廢膏體關鍵性能指標的多目標優化. 工程科學學報, 2022, 44(4):496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004
    [4] Yang C H, Zhang C, Li Q M, et al. Disaster mechanism and prevention methods of large-scale high tailings dam. Rock Soil Mech, 2021, 42(1): 1 doi: 10.16285/j.rsm.2020.1653

    楊春和, 張超, 李全明, 等. 大型高尾礦壩災變機制與防控方法. 巖土力學, 2021, 42(1):1 doi: 10.16285/j.rsm.2020.1653
    [5] Amari K E, Hibti M. A comparison between kinetic test results and natural weathering: The abandoned kettara mine tailings pond. Mine Water Environ, 2020, 39(1): 157 doi: 10.1007/s10230-019-00642-0
    [6] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417

    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
    [7] Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002

    程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002
    [8] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
    [9] Benzaazoua M, Fall M, Belem T. A contribution to understanding the hardening process of cemented pastefill. Miner Eng, 2004, 17(2): 141 doi: 10.1016/j.mineng.2003.10.022
    [10] Yu R C. Theory and Engineering Practice of Metal Cemented Filling in Mines. Beijing: Metallurgical Industry Press, 2020

    于潤滄. 金屬礦山膠結充填理論與工程實踐. 北京: 冶金工業出版社, 2020
    [11] Wu A X, Wang H J. Theory and Technology of Metal Paste Filling. Beijing: Science Press, 2015

    吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015
    [12] Tariq A, Yanful E K. A review of binders used in cemented paste tailings for underground and surface disposal practices. J Environ Manag, 2013, 131: 138 doi: 10.1016/j.jenvman.2013.09.039
    [13] Xu W B, Li Q L, Liu B. Coupled effect of curing temperature and age on compressive behavior, microstructure and ultrasonic properties of cemented tailings backfill. Constr Build Mater, 2020, 237: 117738 doi: 10.1016/j.conbuildmat.2019.117738
    [14] Aprianti E, Shafigh P, Bahri S, et al. Supplementary cementitious materials origin from agricultural wastes - A review. Constr Build Mater, 2015, 74: 176 doi: 10.1016/j.conbuildmat.2014.10.010
    [15] Qiu J P, Guo Z B, Yang L, et al. Effect of tailings fineness on flow, strength, ultrasonic and microstructure characteristics of cemented paste backfill. Constr Build Mater, 2020, 263: 120645 doi: 10.1016/j.conbuildmat.2020.120645
    [16] Jiang G Z, Wu A X, Wang Y M. Curing performance of alkali-activated cement-phosphorous slag and its compatibility with sulfur tailings. Chin J Eng, 2020, 42(8): 963

    姜關照, 吳愛祥, 王貽明. 堿激發水泥–磷渣固化性能及與含硫尾砂的相容性. 工程科學學報, 2020, 42(8):963
    [17] Zhang Y J, Yang M Y, Kang L, et al. Research progresses of new type alkali–activated cementitious material catalyst. J Inorg Mater, 2016, 31(3): 225 doi: 10.15541/jim20150412

    張耀君, 楊夢陽, 康樂, 等. 一類新型堿激發膠凝材料催化劑的研究進展. 無機材料學報, 2016, 31(3):225 doi: 10.15541/jim20150412
    [18] Wu P, Wang J X, Hu S G, et al. Preparation and performance of slag-based binders for the cementation of fine tailings. J Adhesion Sci Technol, 2018, 32(9): 976 doi: 10.1080/01694243.2017.1394034
    [19] Wang H F, Yan H D, Yang W. Properties of alkali-activated fly-ash and cement recycled asphalt concrete. Eng J Wuhan Univ, 2019, 52(6): 504 doi: 10.14188/j.1671-8844.2019-06-005

    王海峰, 嚴捍東, 楊偉. 堿激發粉煤灰水泥再生瀝青混凝土性能研究. 武漢大學學報(工學版), 2019, 52(6):504 doi: 10.14188/j.1671-8844.2019-06-005
    [20] Rashad A M. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—A guide for Civil Engineer. Constr Build Mater, 2013, 47: 29 doi: 10.1016/j.conbuildmat.2013.04.011
    [21] Wen Z J. Study on Preparation and Application of Binder with Steel Slag and Slag for the Cemented Superfine Tailings Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2022

    溫震江. 鋼渣協同礦渣制備超細尾砂充填膠結料及應用研究[學位論文]. 北京: 北京科技大學, 2022
    [22] Xu X H, He M Z. Experiment and Application of Design-Expert and SPSS. Beijing: Science Press, 2010

    徐向宏, 何明珠. 試驗設計與Design-Expert、SPSS應用. 北京: 科學出版社, 2010
    [23] Arroyo-López F N, Bautista-Gallego J, Chiesa A, et al. Use of a D-optimal mixture design to estimate the effects of diverse chloride salts on the growth parameters of Lactobacillus pentosus. Food Microbiol, 2009, 26(4): 396 doi: 10.1016/j.fm.2009.01.009
    [24] Yeom D W, Song Y S, Kim S R, et al. Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design. Int J Nanomedicine, 2015, 10: 3865
    [25] Guo J Y, Hao C L, Wang L S, et al. Optimization of flotation agents of long-flame coal by D-optimal mixture design. J China Coal Soc, 2019, 44(6): 1883 doi: 10.13225/j.cnki.jccs.2018.0968

    郭金玉, 郝成亮, 王靈雙, 等. 基于D-最優混料設計的長焰煤浮選藥劑的優化. 煤炭學報, 2019, 44(6):1883 doi: 10.13225/j.cnki.jccs.2018.0968
    [26] Zheng W Z, Zou M N, Wang Y. Research progress of alkali-activated cementitious materials. J Build Struct, 2019, 40(1): 28 doi: 10.14006/j.jzjgxb.2019.01.003

    鄭文忠, 鄒夢娜, 王英. 堿激發膠凝材料研究進展. 建筑結構學報, 2019, 40(1):28 doi: 10.14006/j.jzjgxb.2019.01.003
    [27] Yang Z Q, Gao Q, Wang Y Q, et al. Experimental study on new filling cementing material using water-hardening nickel slag tailings of Jinchuan Mine. Chin J Geotech Eng, 2014, 36(8): 1498 doi: 10.11779/CJGE201408016

    楊志強, 高謙, 王永前, 等. 利用金川水淬鎳渣尾砂開發新型充填膠凝劑試驗研究. 巖土工程學報, 2014, 36(8):1498 doi: 10.11779/CJGE201408016
    [28] Mi G D. Studies on the Hydration Performance of Complex Cementitious Materials [Dissertation]. Beijing: Tsinghua University, 2016

    米貴東. 多組分復合膠凝材料體系水化性能研究[學位論文]. 北京: 清華大學, 2016
    [29] Rashad A M. An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr Build Mater, 2018, 187: 89 doi: 10.1016/j.conbuildmat.2018.07.150
    [30] Cui C, Peng H, Liu Y, et al. Influence of GGBFS content and activator modulus on curing of metakaolin based geopolymer at ambient temperature. J Build Mater, 2017, 20(4): 535 doi: 10.3969/j.issn.1007-9629.2017.04.008

    崔潮, 彭暉, 劉揚, 等. 礦渣摻量及激發劑模數對偏高嶺土基地聚物常溫固化的影響. 建筑材料學報, 2017, 20(4):535 doi: 10.3969/j.issn.1007-9629.2017.04.008
    [31] Song S J, Jennings H M. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem Concr Res, 1999, 29(2): 159 doi: 10.1016/S0008-8846(98)00212-9
    [32] Han F H, Wang D M, Yan P Y. Hydration kinetics of composite binder containing different content of slag or fly ash. J Chin Ceram Soc, 2014, 42(5): 613 doi: 10.7521/j.issn.0454-5648.2014.05.10

    韓方暉, 王棟民, 閻培渝. 含不同摻量礦渣或粉煤灰的復合膠凝材料的水化動力學. 硅酸鹽學報, 2014, 42(5):613 doi: 10.7521/j.issn.0454-5648.2014.05.10
    [33] Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457

    劉娟紅, 周在波, 吳愛祥, 等. 低濃度拜耳赤泥充填材料制備及水化機理. 工程科學學報, 2020, 42(11):1457
    [34] Brough A R, Holloway M, Sykes J, et al. Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid. Cem Concr Res, 2000, 30(9): 1375
    [35] Zhang J, Shi C J, Zhang Z H, et al. Durability of alkali-activated materials in aggressive environments: A review on recent studies. Constr Build Mater, 2017, 152: 598 doi: 10.1016/j.conbuildmat.2017.07.027
  • 加載中
圖(10) / 表(5)
計量
  • 文章訪問數:  475
  • HTML全文瀏覽量:  153
  • PDF下載量:  110
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-06-24
  • 網絡出版日期:  2022-09-02
  • 刊出日期:  2023-08-25

目錄

    /

    返回文章
    返回