Influence of central segregation on the welding microstructure and properties of FH40 cryogenic steel
-
摘要: 利用金相(OM)、掃描電子顯微鏡(SEM)、電子背散射衍射(EBSD)以及能譜(EDS)等手段研究了FH40低溫鋼焊接接頭顯微組織演變及其對低溫沖擊韌性的影響。結果表明,FH40低溫鋼母材具有優異的綜合力學性能,其屈服強度為420 MPa,抗拉強度為518 MPa,?60 ℃夏比沖擊功為162 J,而焊接接頭熔合線位置及熱影響區的低溫韌性急劇降低至16 J。顯微組織分析表明,低溫鋼母材為細小的多邊形鐵素體+珠光體組織,在心部位置珠光體組織呈帶狀分布。焊接熱影響區的顯微組織主要為針狀鐵素體,但是心部存在明顯的馬氏體帶。針狀鐵素體硬度為229.7 HV0.05,比原來的多邊形鐵素體高約40 HV0.05,而馬氏體的硬度為313.7 HV0.05,較原來的多邊形鐵素體高約140 HV0.05。EBSD結果顯示在馬氏體帶存在較高的內應力,這是造成焊接接頭低溫韌性急劇下降的主要原因。EDS表明,中心偏析導致熱軋低溫鋼母材形成C、Mn富集的珠光體帶,這些C、Mn富集的珠光體帶在焊接熱影響作用下重新奧氏體化,并在冷卻過程中轉變成硬質相馬氏體組織。Abstract: With the development of energy extraction to offshore, deep sea, and polar fields, the service environment is becoming increasingly harsh. Hence, developing cryogenic steel with high strength, high toughness at low temperatures, and excellent welding properties has become an urgent requirement for economic development. With equipment and technology innovation, although the FH40-grade cryogenic steel base metal can be developed by grain refinement, the low-temperature impact toughness of its welded joints might be drastically reduced. Thus, the application of FH40-grade cryogenic steel has been severely restricted. To examine the evolution of the microstructure of welded joints of FH40-grade cryogenic steel and its effect on low-temperature impact toughness, the macrostructure, microstructure morphology, and composition at the welded joints were analyzed using a metallographic optical microscope and through scanning electron microscopy, electron backscatter diffraction (EBSD), and energy dispersive spectroscopy (EDS) analysis, respectively. The results indicate that the FH40 cryogenic steel base metal has excellent comprehensive mechanical properties with a yield strength of 420 MPa, tensile strength of 518 MPa, and Charpy impact energy of 162 J at ?60 ℃, while the low-temperature toughness of the joint fusion line and the heat-affected zone was drastically reduced to 16 J. Results of a microstructure analysis indicate that the base metal of cryogenic steel was a fine polygonal ferrite and pearlite structure and pearlite bands occurred at the core position. The microstructure of the heat-affected zone of welding was mainly acicular ferrite, but evident martensitic bands were observed in the core. The results of the Vickers hardness test revealed that the hardness of 229.7 HV0.05 for acicular ferrite and 313.7 HV0.05 for martensite, which were approximately 40 HV0.05 and 140 HV0.05 higher than the original polygonal ferrite, respectively. An EBSD analysis indicates that the kernel average misorientation of the martensitic band was high with high internal stresses, which was the main cause of the sharp decrease in the low-temperature toughness of the welded joint. The presence of severe bias of carbon and manganese elements was confirmed through the EDS analysis of the banding in the heat-affected zone. In the rolling process, many continuous pearlite-banded structures were formed due to the severe central segregation of the base metal. In the welding process, the local hardenability increases due to the high local composition, and the martensite of hard and brittle phases was formed in the rapid cooling process, causing the increase in the local stress and hardness. Thus, the mismatch between soft and hard phases and organization led to a sharp decrease in the low-temperature toughness of the welded joint.
-
圖 3 焊接接頭金相組織. (a) 接頭處全貌圖; (b) 靠近熔合線熔敷金屬區; (c) 熔合線處; (d) 距根部1/2厚度處熱影響區; (e) 距根部1/4厚度處熱影響區
Figure 3. Optical images of the welded joint: (a) full view of the joint; (b) the zone of weld metal near the fusion line; (c) the fusion line zone; (d) the heat-affected zone 1/2 thickness from the root; (e) the heat-affected zone 1/4 thickness from the root
圖 7 JMatPro軟件計算的實驗鋼均勻合金成分和偏析區合金成分下CCT圖
Figure 7. CCT diagram under uniform alloy composition and alloy composition in the segregation zone of the studied steel calculated by JMatPro software
F (1%) represents the start of ferrite transformation; P (1%) and P (99.9%) represent the start and finish of the pearlite transition, respectively; B (1%) and B (99.9%) represent the start and finish of the bainite transition, respectively; 1% and 99.9% represent transformation fractions of 1% and 99.9% for different transformation, respectively; A3 represents the temperature of complete austenitization at the equilibrium state; Ms represents the start of martensitic transformation.
表 1 焊接工藝參數
Table 1. Parameters of the welding process
Welding method Weld pass Interpass temperature/℃ Diameter of wire/mm Welding current/A Welding voltage/V Welding speed/ (cm?min?1) Heat input/ (kJ?cm?1) FCAW-1G 1 room temperature Φ1.2 150–155 21–22 10.7 17.7–19.1 2 and 3 ≤100 Φ1.2 170–180 23–24 10.8 22.3–24.7 4, 5, and 6 ≤120 Φ1.2 170–180 23–24 14.8 15.9–17.5 表 2 不同狀態試樣的沖擊性能
Table 2. Impact properties of the samples in different states
Samples Charpy impact energy at ?60 ℃/J KV2 #1 KV2 #2 KV2 #3 Average KV2 As-rolled 150 170 165 162 Weld (FL?1) 73 43 41 52 Weld (FL) 16 13 19 16 Weld (FL+1) 15 18 19 17 表 3 熱影響區與母材不同帶狀組織的顯微硬度
Table 3. Micro-hardness of microstructures in the heat-affected zone and base metal bands
Observation area Microstructure Vickers hardness (HV0.05) Value #1 Value #2 Value #3 Value #4 Value #5 Average value Heat-affected zone Black martensite 306.5 298.1 319.9 309.6 334.4 313.7 White acicular ferrite 234.8 219.6 229.8 233.3 227.5 229.0 Matrix Black pearlite 181.9 210.0 188.2 194.3 197.4 194.4 White quasi-polygonal ferrite 162.9 173.4 154.7 175.5 170.2 167.3 www.77susu.com -
參考文獻
[1] Hu X N, Wu B, Chen W, et al. Research progress on wear resistance of low-temperature steel for ships in polar regions. Angang Technol, 2021(6): 5胡曉娜, 吳彼, 陳威, 等. 極地船舶用低溫鋼耐磨性的研究進展. 鞍鋼技術, 2021(6):5 [2] Li Z R, Zhang D C, Wu H Y, et al. Fatigue properties of welded Q420 high strength steel at room and low temperatures. Constr Build Mater, 2018, 189: 955 doi: 10.1016/j.conbuildmat.2018.07.231 [3] Luo Q Y, Shou J M. Economic viability and prospects of LNG transportation through the Arctic Northeast passage. J Dalian Marit Univ, 2016, 42(3): 49 doi: 10.16411/j.cnki.issn1006-7736.2016.03.009駱巧云, 壽建敏. 北極東北航道LNG運輸經濟性與前景分析. 大連海事大學學報, 2016, 42(3):49 doi: 10.16411/j.cnki.issn1006-7736.2016.03.009 [4] Wang C Y, Xia C X, Wang D S, et al. Effect of surface oxides on wear resistance of new F-class marine low temperature steel. J Chin Soc Corros Prot, 2022, 42(3): 395 doi: 10.11902/1005.4537.2021.254王超逸, 夏呈祥, 王東勝, 等. 新型F級船用低溫鋼表面氧化物對其耐磨性能影響研究. 中國腐蝕與防護學報, 2022, 42(3):395 doi: 10.11902/1005.4537.2021.254 [5] Zhang L H, Chen F R. Research status of low-temperature steel and its low-temperature toughness. Electr Weld Mach, 2020, 50(12): 88 doi: 10.7512/j.issn.1001-2303.2020.12.18張麗紅, 陳芙蓉. 低溫鋼及其低溫韌性研究現狀. 電焊機, 2020, 50(12):88 doi: 10.7512/j.issn.1001-2303.2020.12.18 [6] Xu Y L, Li J S, Xu L. TMCP of E/F grade high-strength ship plates in Shougang Co. J Univ Sci Technol Beijing, 2011, 33(Suppl 1): 108 doi: 10.13374/j.issn1001-053x.2011.s1.025徐永林, 李京社, 徐莉. 首鋼TMCP工藝E/F級高強船板冶煉工藝. 北京科技大學學報, 2011, 33(增刊 1):108 doi: 10.13374/j.issn1001-053x.2011.s1.025 [7] Liu X Y, Wang Y F, Jiang W H, et al. Development of F36 hull plate by TMCP process. Hot Work Treatment, 2010, 39(14): 15 doi: 10.3969/j.issn.1001-3814.2010.14.005劉學一, 王彥鋒, 江衛華, 等. 低碳TMCP工藝開發F36高強船板鋼. 熱加工工藝, 2010, 39(14):15 doi: 10.3969/j.issn.1001-3814.2010.14.005 [8] Chu F, Yan J, Dai L L, et al. Effect of rolling cooling process on microstructure and properties of LT-FH32 low temperature steel. Hot Work Technol, 2019, 48(15): 37褚峰, 嚴佳, 戴亮亮, 等. 軋制冷卻工藝對LT-FH32低溫鋼組織及性能的影響. 熱加工工藝, 2019, 48(15):37 [9] Xiao D H, Tang W, Luo D, et al. Microstructure and properties of low temperature steel for ultra large liquefied petroleum gas carrier. Iron Steel, 2020, 55(4): 82 doi: 10.13228/j.boyuan.issn0449-749x.20190330肖大恒, 湯偉, 羅登, 等. 超大型液化石油氣船用低溫鋼組織性能. 鋼鐵, 2020, 55(4):82 doi: 10.13228/j.boyuan.issn0449-749x.20190330 [10] Liu Z Y, Wang C J, Cai Z Z, et al. New secondary cooling process for transverse corner crack control of Nb micro-alloyed steel slab. China Metall, 2018, 28(3): 22 doi: 10.13228/j.boyuan.issn1006-9356.20170230劉志遠, 王重君, 蔡兆鎮, 等. 含鈮微合金鋼連鑄坯角部裂紋控制二冷新工藝. 中國冶金, 2018, 28(3):22 doi: 10.13228/j.boyuan.issn1006-9356.20170230 [11] Qing J S, Shen H F, Liu M. V-N microalloying of high strength weathering steel YQ450NQR1. Iron &Steel, 2017, 52(5): 87 doi: 10.13228/j.boyuan.issn0449-749x.20160428卿家勝, 沈厚發, 劉明. 高強耐候鋼YQ450NQR1釩氮微合金化. 鋼鐵, 2017, 52(5):87 doi: 10.13228/j.boyuan.issn0449-749x.20160428 [12] Chen J, Li H Y, Zhou W H, et al. Effect of heat input on low temperature toughness and corrosion resistance of Q1100 steel welded joints. Chin J Mater Res, 2022, 36(8): 617陳杰, 李紅英, 周文浩, 等. 熱輸入對Q1100鋼焊接接頭低溫韌性及耐蝕性能的影響. 材料研究學報, 2022, 36(8):617 [13] Wang J, Dong J H. Effect of welding process on microstructure and cryogenic properties of welded joint of 16MnR steel. Hot Work Technol, 2009, 38(11): 8 doi: 10.3969/j.issn.1001-3814.2009.11.003王晶, 董俊慧. 焊接工藝對16MnR鋼接頭組織和低溫性能的影響. 熱加工工藝, 2009, 38(11):8 doi: 10.3969/j.issn.1001-3814.2009.11.003 [14] Ji Y L, Liu J H, Chen F, et al. Research on centerline segregation heredity of F550 shipbuilding steel // Proceedings of China Iron & Steel Annual Meeting and Annual Academic of BaoSteel. Shanghai, 2015: 663季益龍, 劉建華, 陳方, 等. F550船板鋼中心偏析遺傳性研究 //“第十屆中國鋼鐵年會”暨“第六屆寶鋼學術年會” 上海, 2015: 663 [15] Jie R H. Analysis and improvement measures on band structure formation of 42CrMoA rolled steel with 120t BOF-LF-RH-Φ300 mm CC-CR flowsheet. Special Steel, 2021, 42(4): 81 doi: 10.3969/j.issn.1003-8620.2021.04.019介瑞華. 120t BOF-LF-RH-Φ300mm CC-CR流程42CrMoA鋼軋材帶狀組織形成分析及改善措施. 特殊鋼, 2021, 42(4):81 doi: 10.3969/j.issn.1003-8620.2021.04.019 [16] Yang J T, Tian L, Bao Y P. Test of slabs center segregation. Continuous Cast, 2013, 38(4): 32楊建桃, 田陸, 包燕平. 連鑄坯中心偏析檢測. 連鑄, 2013, 38(4):32 [17] Liang J H, Zhao Z Z, Tang D, et al. Improved microstructural homogeneity and mechanical property of medium manganese steel with Mn segregation banding by alternating lath matrix. Mater Sci Eng A, 2018, 711: 175 doi: 10.1016/j.msea.2017.11.046 [18] Weng Y Q, Kong L H, Wang G D, et al. Ultrafine Grained Steel: The Refinement Theory and Controlled Technology of Steel. Beijing: Metallurgical Industry Press, 2003翁宇慶, 孔令航, 王國棟, 等. 超細晶鋼: 鋼的組織細化理論與控制技術. 北京: 冶金工業出版社, 2003 [19] Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction. Microsc Microanal, 2011, 17(3): 316 doi: 10.1017/S1431927611000055 [20] Wang J L, Hong H, Huang A R, et al. New insight into the relationship between grain boundaries and hardness in bainitic/martensitic steels from the crystallographic perspective. Mater Lett, 2022, 308: 131105 doi: 10.1016/j.matlet.2021.131105 [21] Guo F J, Wang X L, Liu W L, et al. The influence of centerline segregation on the mechanical performance and microstructure of X70 pipeline steel. Steel Res Int, 2018, 89(12): 1800407 doi: 10.1002/srin.201800407 [22] Wang J L, Guo F J, Wang Z Q, et al. Influence of centerline segregation on the crystallographic features and mechanical properties of a high-strength low-alloy steel. Mater Lett, 2020, 267: 127512 doi: 10.1016/j.matlet.2020.127512 [23] Yu Y S, Hu B, Gao M L, et al. Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel. Int J Miner Metall Mater, 2021, 28(5): 816 doi: 10.1007/s12613-020-2235-5 [24] Wang C S, Guo F J, Li G L, et al. Influence of central segregation control on low temperature toughness of steel. Iron Steel, 2019, 54(8): 202王長順, 郭福建, 李廣龍, 等. 中心偏析控制對型鋼低溫韌性的影響. 鋼鐵, 2019, 54(8):202 [25] Ji Y, Min Y F, Li P S, et al. Research status of banding phenomena in steels. China Metall, 2016, 26(4): 1紀元, 閔云峰, 李鵬善, 等. 鋼中帶狀組織及其研究現狀. 中國冶金, 2016, 26(4):1 -