<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

中心偏析對FH40低溫鋼焊接組織性能的影響

柳志鵬 謝振家 羅登 周文浩 郭暉 尚成嘉

柳志鵬, 謝振家, 羅登, 周文浩, 郭暉, 尚成嘉. 中心偏析對FH40低溫鋼焊接組織性能的影響[J]. 工程科學學報, 2023, 45(8): 1335-1341. doi: 10.13374/j.issn2095-9389.2022.06.21.003
引用本文: 柳志鵬, 謝振家, 羅登, 周文浩, 郭暉, 尚成嘉. 中心偏析對FH40低溫鋼焊接組織性能的影響[J]. 工程科學學報, 2023, 45(8): 1335-1341. doi: 10.13374/j.issn2095-9389.2022.06.21.003
LIU Zhi-peng, XIE Zhen-jia, LUO Deng, ZHOU Wen-hao, GUO Hui, SHANG Cheng-jia. Influence of central segregation on the welding microstructure and properties of FH40 cryogenic steel[J]. Chinese Journal of Engineering, 2023, 45(8): 1335-1341. doi: 10.13374/j.issn2095-9389.2022.06.21.003
Citation: LIU Zhi-peng, XIE Zhen-jia, LUO Deng, ZHOU Wen-hao, GUO Hui, SHANG Cheng-jia. Influence of central segregation on the welding microstructure and properties of FH40 cryogenic steel[J]. Chinese Journal of Engineering, 2023, 45(8): 1335-1341. doi: 10.13374/j.issn2095-9389.2022.06.21.003

中心偏析對FH40低溫鋼焊接組織性能的影響

doi: 10.13374/j.issn2095-9389.2022.06.21.003
基金項目: 國家自然科學基金資助項目(51701012)
詳細信息
    通訊作者:

    E-mail: zjxie@ustb.edu.cn

  • 中圖分類號: TG142.79

Influence of central segregation on the welding microstructure and properties of FH40 cryogenic steel

More Information
  • 摘要: 利用金相(OM)、掃描電子顯微鏡(SEM)、電子背散射衍射(EBSD)以及能譜(EDS)等手段研究了FH40低溫鋼焊接接頭顯微組織演變及其對低溫沖擊韌性的影響。結果表明,FH40低溫鋼母材具有優異的綜合力學性能,其屈服強度為420 MPa,抗拉強度為518 MPa,?60 ℃夏比沖擊功為162 J,而焊接接頭熔合線位置及熱影響區的低溫韌性急劇降低至16 J。顯微組織分析表明,低溫鋼母材為細小的多邊形鐵素體+珠光體組織,在心部位置珠光體組織呈帶狀分布。焊接熱影響區的顯微組織主要為針狀鐵素體,但是心部存在明顯的馬氏體帶。針狀鐵素體硬度為229.7 HV0.05,比原來的多邊形鐵素體高約40 HV0.05,而馬氏體的硬度為313.7 HV0.05,較原來的多邊形鐵素體高約140 HV0.05。EBSD結果顯示在馬氏體帶存在較高的內應力,這是造成焊接接頭低溫韌性急劇下降的主要原因。EDS表明,中心偏析導致熱軋低溫鋼母材形成C、Mn富集的珠光體帶,這些C、Mn富集的珠光體帶在焊接熱影響作用下重新奧氏體化,并在冷卻過程中轉變成硬質相馬氏體組織。

     

  • 圖  1  焊接接頭及沖擊試樣示意圖

    Figure  1.  Schematic diagram of the welded point and impact sample

    圖  2  實驗鋼母材SEM顯微組織. (a) 低倍鐵素體?珠光體帶狀組織; (b) 高倍退化珠光體組織形貌

    Figure  2.  SEM microstructure of the base metal: (a) ferrite?pearlite banding at low magnification; (b) morphology of degenerated pearlite at high magnification

    圖  3  焊接接頭金相組織. (a) 接頭處全貌圖; (b) 靠近熔合線熔敷金屬區; (c) 熔合線處; (d) 距根部1/2厚度處熱影響區; (e) 距根部1/4厚度處熱影響區

    Figure  3.  Optical images of the welded joint: (a) full view of the joint; (b) the zone of weld metal near the fusion line; (c) the fusion line zone; (d) the heat-affected zone 1/2 thickness from the root; (e) the heat-affected zone 1/4 thickness from the root

    圖  4  熱影響區EBSD結果. (a) BC圖; (b) KAM圖

    Figure  4.  EBSD images of the heat-affected zone: (a) band contrast (BC) map; (b) KAM map

    圖  5  焊接接頭金相組織. (a) 熱影響區; (b) 母材

    Figure  5.  Optical images of the welded joint: (a) heat-affected zone; (b) matrix

    圖  6  熱影響區能譜分析. (a) SEM圖; (b) C、Mn元素分布圖

    Figure  6.  Energy spectrum analysis of the heat-affected zone: (a) SEM micrographs; (b) distribution of carbon and manganese elements

    圖  7  JMatPro軟件計算的實驗鋼均勻合金成分和偏析區合金成分下CCT圖

    Figure  7.  CCT diagram under uniform alloy composition and alloy composition in the segregation zone of the studied steel calculated by JMatPro software

    F (1%) represents the start of ferrite transformation; P (1%) and P (99.9%) represent the start and finish of the pearlite transition, respectively; B (1%) and B (99.9%) represent the start and finish of the bainite transition, respectively; 1% and 99.9% represent transformation fractions of 1% and 99.9% for different transformation, respectively; A3 represents the temperature of complete austenitization at the equilibrium state; Ms represents the start of martensitic transformation.

    表  1  焊接工藝參數

    Table  1.   Parameters of the welding process

    Welding methodWeld passInterpass temperature/℃Diameter of wire/mmWelding current/AWelding voltage/VWelding speed/ (cm?min?1)Heat input/ (kJ?cm?1)
    FCAW-1G1room temperatureΦ1.2150–15521–2210.717.7–19.1
    2 and 3≤100Φ1.2170–18023–2410.822.3–24.7
    4, 5, and 6≤120Φ1.2170–18023–2414.815.9–17.5
    下載: 導出CSV

    表  2  不同狀態試樣的沖擊性能

    Table  2.   Impact properties of the samples in different states

    SamplesCharpy impact energy at ?60 ℃/J
    KV2 #1KV2 #2KV2 #3Average KV2
    As-rolled150170165162
    Weld (FL?1)73434152
    Weld (FL)16131916
    Weld (FL+1)15181917
    下載: 導出CSV

    表  3  熱影響區與母材不同帶狀組織的顯微硬度

    Table  3.   Micro-hardness of microstructures in the heat-affected zone and base metal bands

    Observation areaMicrostructureVickers hardness (HV0.05)
    Value #1Value #2Value #3Value #4Value #5Average value
    Heat-affected zoneBlack martensite306.5298.1319.9309.6334.4313.7
    White acicular ferrite234.8219.6229.8233.3227.5229.0
    MatrixBlack pearlite181.9210.0188.2194.3197.4194.4
    White quasi-polygonal ferrite162.9173.4154.7175.5170.2167.3
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Hu X N, Wu B, Chen W, et al. Research progress on wear resistance of low-temperature steel for ships in polar regions. Angang Technol, 2021(6): 5

    胡曉娜, 吳彼, 陳威, 等. 極地船舶用低溫鋼耐磨性的研究進展. 鞍鋼技術, 2021(6):5
    [2] Li Z R, Zhang D C, Wu H Y, et al. Fatigue properties of welded Q420 high strength steel at room and low temperatures. Constr Build Mater, 2018, 189: 955 doi: 10.1016/j.conbuildmat.2018.07.231
    [3] Luo Q Y, Shou J M. Economic viability and prospects of LNG transportation through the Arctic Northeast passage. J Dalian Marit Univ, 2016, 42(3): 49 doi: 10.16411/j.cnki.issn1006-7736.2016.03.009

    駱巧云, 壽建敏. 北極東北航道LNG運輸經濟性與前景分析. 大連海事大學學報, 2016, 42(3):49 doi: 10.16411/j.cnki.issn1006-7736.2016.03.009
    [4] Wang C Y, Xia C X, Wang D S, et al. Effect of surface oxides on wear resistance of new F-class marine low temperature steel. J Chin Soc Corros Prot, 2022, 42(3): 395 doi: 10.11902/1005.4537.2021.254

    王超逸, 夏呈祥, 王東勝, 等. 新型F級船用低溫鋼表面氧化物對其耐磨性能影響研究. 中國腐蝕與防護學報, 2022, 42(3):395 doi: 10.11902/1005.4537.2021.254
    [5] Zhang L H, Chen F R. Research status of low-temperature steel and its low-temperature toughness. Electr Weld Mach, 2020, 50(12): 88 doi: 10.7512/j.issn.1001-2303.2020.12.18

    張麗紅, 陳芙蓉. 低溫鋼及其低溫韌性研究現狀. 電焊機, 2020, 50(12):88 doi: 10.7512/j.issn.1001-2303.2020.12.18
    [6] Xu Y L, Li J S, Xu L. TMCP of E/F grade high-strength ship plates in Shougang Co. J Univ Sci Technol Beijing, 2011, 33(Suppl 1): 108 doi: 10.13374/j.issn1001-053x.2011.s1.025

    徐永林, 李京社, 徐莉. 首鋼TMCP工藝E/F級高強船板冶煉工藝. 北京科技大學學報, 2011, 33(增刊 1):108 doi: 10.13374/j.issn1001-053x.2011.s1.025
    [7] Liu X Y, Wang Y F, Jiang W H, et al. Development of F36 hull plate by TMCP process. Hot Work Treatment, 2010, 39(14): 15 doi: 10.3969/j.issn.1001-3814.2010.14.005

    劉學一, 王彥鋒, 江衛華, 等. 低碳TMCP工藝開發F36高強船板鋼. 熱加工工藝, 2010, 39(14):15 doi: 10.3969/j.issn.1001-3814.2010.14.005
    [8] Chu F, Yan J, Dai L L, et al. Effect of rolling cooling process on microstructure and properties of LT-FH32 low temperature steel. Hot Work Technol, 2019, 48(15): 37

    褚峰, 嚴佳, 戴亮亮, 等. 軋制冷卻工藝對LT-FH32低溫鋼組織及性能的影響. 熱加工工藝, 2019, 48(15):37
    [9] Xiao D H, Tang W, Luo D, et al. Microstructure and properties of low temperature steel for ultra large liquefied petroleum gas carrier. Iron Steel, 2020, 55(4): 82 doi: 10.13228/j.boyuan.issn0449-749x.20190330

    肖大恒, 湯偉, 羅登, 等. 超大型液化石油氣船用低溫鋼組織性能. 鋼鐵, 2020, 55(4):82 doi: 10.13228/j.boyuan.issn0449-749x.20190330
    [10] Liu Z Y, Wang C J, Cai Z Z, et al. New secondary cooling process for transverse corner crack control of Nb micro-alloyed steel slab. China Metall, 2018, 28(3): 22 doi: 10.13228/j.boyuan.issn1006-9356.20170230

    劉志遠, 王重君, 蔡兆鎮, 等. 含鈮微合金鋼連鑄坯角部裂紋控制二冷新工藝. 中國冶金, 2018, 28(3):22 doi: 10.13228/j.boyuan.issn1006-9356.20170230
    [11] Qing J S, Shen H F, Liu M. V-N microalloying of high strength weathering steel YQ450NQR1. Iron &Steel, 2017, 52(5): 87 doi: 10.13228/j.boyuan.issn0449-749x.20160428

    卿家勝, 沈厚發, 劉明. 高強耐候鋼YQ450NQR1釩氮微合金化. 鋼鐵, 2017, 52(5):87 doi: 10.13228/j.boyuan.issn0449-749x.20160428
    [12] Chen J, Li H Y, Zhou W H, et al. Effect of heat input on low temperature toughness and corrosion resistance of Q1100 steel welded joints. Chin J Mater Res, 2022, 36(8): 617

    陳杰, 李紅英, 周文浩, 等. 熱輸入對Q1100鋼焊接接頭低溫韌性及耐蝕性能的影響. 材料研究學報, 2022, 36(8):617
    [13] Wang J, Dong J H. Effect of welding process on microstructure and cryogenic properties of welded joint of 16MnR steel. Hot Work Technol, 2009, 38(11): 8 doi: 10.3969/j.issn.1001-3814.2009.11.003

    王晶, 董俊慧. 焊接工藝對16MnR鋼接頭組織和低溫性能的影響. 熱加工工藝, 2009, 38(11):8 doi: 10.3969/j.issn.1001-3814.2009.11.003
    [14] Ji Y L, Liu J H, Chen F, et al. Research on centerline segregation heredity of F550 shipbuilding steel // Proceedings of China Iron & Steel Annual Meeting and Annual Academic of BaoSteel. Shanghai, 2015: 663

    季益龍, 劉建華, 陳方, 等. F550船板鋼中心偏析遺傳性研究 //“第十屆中國鋼鐵年會”暨“第六屆寶鋼學術年會” 上海, 2015: 663
    [15] Jie R H. Analysis and improvement measures on band structure formation of 42CrMoA rolled steel with 120t BOF-LF-RH-Φ300 mm CC-CR flowsheet. Special Steel, 2021, 42(4): 81 doi: 10.3969/j.issn.1003-8620.2021.04.019

    介瑞華. 120t BOF-LF-RH-Φ300mm CC-CR流程42CrMoA鋼軋材帶狀組織形成分析及改善措施. 特殊鋼, 2021, 42(4):81 doi: 10.3969/j.issn.1003-8620.2021.04.019
    [16] Yang J T, Tian L, Bao Y P. Test of slabs center segregation. Continuous Cast, 2013, 38(4): 32

    楊建桃, 田陸, 包燕平. 連鑄坯中心偏析檢測. 連鑄, 2013, 38(4):32
    [17] Liang J H, Zhao Z Z, Tang D, et al. Improved microstructural homogeneity and mechanical property of medium manganese steel with Mn segregation banding by alternating lath matrix. Mater Sci Eng A, 2018, 711: 175 doi: 10.1016/j.msea.2017.11.046
    [18] Weng Y Q, Kong L H, Wang G D, et al. Ultrafine Grained Steel: The Refinement Theory and Controlled Technology of Steel. Beijing: Metallurgical Industry Press, 2003

    翁宇慶, 孔令航, 王國棟, 等. 超細晶鋼: 鋼的組織細化理論與控制技術. 北京: 冶金工業出版社, 2003
    [19] Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction. Microsc Microanal, 2011, 17(3): 316 doi: 10.1017/S1431927611000055
    [20] Wang J L, Hong H, Huang A R, et al. New insight into the relationship between grain boundaries and hardness in bainitic/martensitic steels from the crystallographic perspective. Mater Lett, 2022, 308: 131105 doi: 10.1016/j.matlet.2021.131105
    [21] Guo F J, Wang X L, Liu W L, et al. The influence of centerline segregation on the mechanical performance and microstructure of X70 pipeline steel. Steel Res Int, 2018, 89(12): 1800407 doi: 10.1002/srin.201800407
    [22] Wang J L, Guo F J, Wang Z Q, et al. Influence of centerline segregation on the crystallographic features and mechanical properties of a high-strength low-alloy steel. Mater Lett, 2020, 267: 127512 doi: 10.1016/j.matlet.2020.127512
    [23] Yu Y S, Hu B, Gao M L, et al. Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel. Int J Miner Metall Mater, 2021, 28(5): 816 doi: 10.1007/s12613-020-2235-5
    [24] Wang C S, Guo F J, Li G L, et al. Influence of central segregation control on low temperature toughness of steel. Iron Steel, 2019, 54(8): 202

    王長順, 郭福建, 李廣龍, 等. 中心偏析控制對型鋼低溫韌性的影響. 鋼鐵, 2019, 54(8):202
    [25] Ji Y, Min Y F, Li P S, et al. Research status of banding phenomena in steels. China Metall, 2016, 26(4): 1

    紀元, 閔云峰, 李鵬善, 等. 鋼中帶狀組織及其研究現狀. 中國冶金, 2016, 26(4):1
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  384
  • HTML全文瀏覽量:  177
  • PDF下載量:  65
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-06-21
  • 網絡出版日期:  2022-09-13
  • 刊出日期:  2023-08-25

目錄

    /

    返回文章
    返回