<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于編碼器與NFC修正融合的帶式輸送機軌道式巡檢機器人定位方法

楊春雨 胡建兵 王國慶 馬磊 劉曉敏

楊春雨, 胡建兵, 王國慶, 馬磊, 劉曉敏. 基于編碼器與NFC修正融合的帶式輸送機軌道式巡檢機器人定位方法[J]. 工程科學學報, 2023, 45(8): 1417-1424. doi: 10.13374/j.issn2095-9389.2022.06.12.003
引用本文: 楊春雨, 胡建兵, 王國慶, 馬磊, 劉曉敏. 基于編碼器與NFC修正融合的帶式輸送機軌道式巡檢機器人定位方法[J]. 工程科學學報, 2023, 45(8): 1417-1424. doi: 10.13374/j.issn2095-9389.2022.06.12.003
YANG Chun-yu, HU Jian-bing, WANG Guo-qing, MA Lei, LIU Xiao-min. Positioning method of an orbital inspection robot for belt conveyors based on encoder and NFC correction fusion[J]. Chinese Journal of Engineering, 2023, 45(8): 1417-1424. doi: 10.13374/j.issn2095-9389.2022.06.12.003
Citation: YANG Chun-yu, HU Jian-bing, WANG Guo-qing, MA Lei, LIU Xiao-min. Positioning method of an orbital inspection robot for belt conveyors based on encoder and NFC correction fusion[J]. Chinese Journal of Engineering, 2023, 45(8): 1417-1424. doi: 10.13374/j.issn2095-9389.2022.06.12.003

基于編碼器與NFC修正融合的帶式輸送機軌道式巡檢機器人定位方法

doi: 10.13374/j.issn2095-9389.2022.06.12.003
基金項目: 國家重點研發計劃資助項目(2020YFB1314100);國家自然科學基金資助項目(62003348,62073327,61873272,62203448);江蘇省自然科學基金資助項目(BK20200633,BK20200631)
詳細信息
    通訊作者:

    E-mail: guoqingwang@cumt.edu.cn

  • 中圖分類號: TG142.71

Positioning method of an orbital inspection robot for belt conveyors based on encoder and NFC correction fusion

More Information
  • 摘要: 軌道式巡檢機器人的高精度定位技術是帶式輸送機智能化巡檢的重要研究方向之一,而礦用帶式輸送機距離超長,工作環境復雜,嚴重影響巡檢機器人的定位精度。針對目前的軌道式巡檢機器人定位技術在礦用帶式輸送機巡檢領域存在的問題,提出了基于編碼器和NFC雙傳感器修正融合的高精度定位方法。分析帶式輸送機軌道式巡檢機器人軌道與環境特性對編碼器系數的影響,提出軌道分段原則。利用機器人搭載的編碼器數據反饋特點,構建編碼器遞推定位方法。通過機器人運行的歷史數據,對編碼器系數進行分段分方向修正,并提出基于遞推最小二乘的編碼器系數修正方法,以提高編碼器對軌道環境的適應性。在此基礎上,根據機器人所在軌道分段的位置不同,在段端基于卡爾曼濾波算法實現編碼器和NFC數據融合,在段內利用分段分方向修正系數與編碼器信息進行遞推定位,實現軌道式巡檢機器人連續高精度的定位。針對所提方法搭建了實驗平臺并進行了實物測試,實驗結果表明,相較于編碼器定位、RFID定位和兩者融合定位三種傳統定位方式,基于編碼器和NFC的修正融合定位算法能夠有效提高軌道式巡檢機器人定位對軌道環境的適應性,同時提高軌道式巡檢機器人的定位精度。

     

  • 圖  1  帶式輸送機軌道式巡檢機器人系統

    Figure  1.  Inspection robot system of a belt conveyor

    圖  2  基于編碼器和NFC的機器人定位方案

    Figure  2.  Robot positioning scheme based on encoder and NFC

    圖  3  基于編碼器和NFC修正融合的定位算法流程

    Figure  3.  Localization algorithm of corrective fusion based on encoder and NFC

    圖  4  編碼器碼盤與軸相對位置示意圖

    Figure  4.  Relative position of the encoder disc and shaft

    圖  5  實驗系統

    Figure  5.  Experiment system

    圖  6  S型軌道分段示意圖

    Figure  6.  Schematic diagram of the S-shaped track segment

    圖  7  第1段軌道雙向修正系數

    Figure  7.  Bidirectional correction factor for the first track

    圖  8  第10次軌道各段的修正系數

    Figure  8.  Correction factors for each segment of the 10th orbit

    圖  9  四種算法第10次正向定位效果

    Figure  9.  Effect of the 10th forward positioning of the four algorithms

    圖  10  三種算法第10次正向誤差對比

    Figure  10.  Comparison of the 10th forward errors of the three algorithms

    表  1  定位傳感器參數

    Table  1.   Positioning sensor parameters

    SensorParameterValue
    EncoderFriction wheel diameter63.5 mm
    Resolution1024 (pulse per revolution)
    NFCCard read error10 mm
    下載: 導出CSV

    表  2  參數取值

    Table  2.   Parameter value

    VariableValueVariableValue
    ${\hat {\boldsymbol{k}}_j}\left( 0 \right) = k$0.1948${\boldsymbol{P}}\left( {0|0} \right)$1
    ${{\boldsymbol{P}}_j}\left( 0 \right)$$1.0 \times {10^{ - 7}}$R1
    $\hat x\left( {0|0} \right)$0.1948Q1
    下載: 導出CSV

    表  3  三種算法第10次正向精度

    Table  3.   Tenth forward accuracy of the three algorithms

    MethodRoot mean square error of positioning/ mm
    Encoder positioning72.7
    Fusion positioning22.1
    Correct fusion positioning16.6
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Ribeiro R G, Júnior J R C, Cota L P, et al. Unmanned aerial vehicle location routing problem with charging stations for belt conveyor inspection system in the mining industry. IEEE Trans Intell Transp Syst, 2019, 21(10): 4186
    [2] Kawalec W, Suchorab N, Konieczna-Fu?awka M, et al. Specific energy consumption of a belt conveyor system in a continuous surface mine. Energies, 2020, 13(19): 5214 doi: 10.3390/en13195214
    [3] Liu M, Zhu Q G, Yin Y F, et al. Damage detection method of mining conveyor belt based on deep learning. IEEE Sens J, 2022, 22(11): 10870 doi: 10.1109/JSEN.2022.3170971
    [4] Gao R, Miao C Y, Miao D, et al. Correction method of non-uniform illumination image for on-line fault detection of conveyor belt. J China Univ Min Technol, 2018, 47(6): 1378

    高瑞, 苗長云, 苗笛, 等. 輸送帶故障在線檢測非均勻光照圖像校正方法. 中國礦業大學學報, 2018, 47(6):1378
    [5] Qu D R, Qiao T Z, Pang Y S, et al. Research on ADCN method for damage detection of mining conveyor belt. IEEE Sens J, 2021, 21(6): 8662 doi: 10.1109/JSEN.2020.3048057
    [6] Zhang C W, Chen S R, Zhao L, et al. FPGA-based linear detection algorithm of an underground inspection robot. Algorithms, 2021, 14(10): 284 doi: 10.3390/a14100284
    [7] Jiang W, Zou D H, Zhou X, et al. Research on key technologies of multi-task-oriented live maintenance robots for Ultra High Voltage multi-split transmission lines. Ind Robot Int J Robotics Res Appl, 2021, 48(1): 17
    [8] Li H X, Ao L H, Guo H, et al. Indoor multi-sensor fusion positioning based on federated filtering. Measurement, 2020, 154: 107506 doi: 10.1016/j.measurement.2020.107506
    [9] Silva B P A, Ferreira R A M, Gomes J S C, et al. On-rail solution for autonomous inspections in electrical substations. Infrared Phys Technol, 2018, 90: 53 doi: 10.1016/j.infrared.2018.01.019
    [10] Liu H S, Ni H Y, Zhou D C, et al. Design and application of rail-type inspection robot for GIS high voltage substation // Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). Beijing, 2020: 1
    [11] Qu Y H, Yang M H, Zhang J Q, et al. An outline of multi-sensor fusion methods for mobile agents indoor navigation. Sensor, 2021, 21(5): 1605 doi: 10.3390/s21051605
    [12] Tao X W, Zhu B, Xuan S Y, et al. A multi-sensor fusion positioning strategy for intelligent vehicles using global pose graph optimization. IEEE Trans Veh Technol, 2021, 71(3): 2614
    [13] Li X Q, He W, Zhu S Q, et al. Survey of simultaneous localization and mapping based on environmental semantic information. Chin J Eng, 2021, 43(6): 754

    李小倩, 何偉, 朱世強, 等. 基于環境語義信息的同步定位與地圖構建方法綜述. 工程科學學報, 2021, 43(6):754
    [14] Tang C Q, Zhou G B, Gao Z X, et al. A novel rail inspection robot and fault detection method for the coal mine hoisting system. IEEE Intell Transp Syst Mag, 2019, 11(2): 110 doi: 10.1109/MITS.2019.2903540
    [15] Zhang S Y, Fan S S, Cheng J Y, et al. Design of rail type inspection robot control system based on STM32. Instrum Tech Sens, 2020(9): 93

    張申毅, 樊紹勝, 程嘉翊, 等. 基于STM32的軌道式巡檢機器人控制系統的設計. 儀表技術與傳感器, 2020(9):93
    [16] Zhou L H. Research and Implementation of Electrical Control and Navigation for Intelligent Dish Recycling Robot [Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2018

    周林海. 智能餐盤回收機器人的電氣控制和導航方法的研究與實現[學位論文]. 成都: 電子科技大學, 2018
    [17] Szrek J, Jakubiak J, Zimroz R. A mobile robot-based system for automatic inspection of belt conveyors in mining industry. Energies, 2022, 15(1): 327 doi: 10.3390/en15010327
    [18] Litton C D, Perera I E. Evaluation of criteria for the detection of fires in underground conveyor belt haulageways. Fire Saf J, 2012, 51: 110 doi: 10.1016/j.firesaf.2012.04.004
    [19] Ivanovic M, Skataric D. ICT technologies in optimization of machines movement at open-pit coal mine. Teh Vjesn, 2019, 26(4): 1152
    [20] Molnár V, Fedorko G, Stehlíková B, et al. Analysis of a pipe conveyor’s idler housing failure due to a missing roller in terms of contact forces. Eng Fail Anal, 2021, 127: 105527 doi: 10.1016/j.engfailanal.2021.105527
    [21] Lyu R Y, Cheng W C, Zhang W. Modeling and performance analysis of OAM-NFC systems. IEEE Trans Commun, 2021, 69(12): 7986 doi: 10.1109/TCOMM.2021.3110871
    [22] Alnfiai M. A user-centered design approach to near field communication-based applications for children. Int J Adv Comput Sci Appl, 2020, 11(12): 486
    [23] Sarkar T S, Das S, Chakraborty B, et al. Absolute encoder-based dual axis tilt sensor. IEEE Sens J, 2019, 19(7): 2474 doi: 10.1109/JSEN.2018.2887026
    [24] Tinazzi F, Carlet P G, Bolognani S, et al. Motor parameter-free predictive current control of synchronous motors by recursive least-square self-commissioning model. IEEE Trans Ind Electron, 2020, 67(11): 9093 doi: 10.1109/TIE.2019.2956407
    [25] Wang H, Lei T, Rong Y M, et al. Arc length stable method of GTAW based on adaptive Kalman filter. J Manuf Process, 2021, 63: 130 doi: 10.1016/j.jmapro.2020.01.029
    [26] Wang X L, Jin H Q, Liu X Y. Online estimation of the state of charge of a lithium-ion battery based on the fusion model. Chin J Eng, 2020, 42(9): 1200

    王曉蘭, 靳皓晴, 劉祥遠. 基于融合模型的鋰離子電池荷電狀態在線估計. 工程科學學報, 2020, 42(9):1200
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數:  445
  • HTML全文瀏覽量:  133
  • PDF下載量:  112
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-06-12
  • 網絡出版日期:  2022-10-31
  • 刊出日期:  2023-08-25

目錄

    /

    返回文章
    返回