<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

活性氧抗菌機理及其研究進展

陳媛媛 唐曉寧 崔帥 馬浩 孫佳慧

陳媛媛, 唐曉寧, 崔帥, 馬浩, 孫佳慧. 活性氧抗菌機理及其研究進展[J]. 工程科學學報, 2023, 45(6): 967-978. doi: 10.13374/j.issn2095-9389.2022.06.07.005
引用本文: 陳媛媛, 唐曉寧, 崔帥, 馬浩, 孫佳慧. 活性氧抗菌機理及其研究進展[J]. 工程科學學報, 2023, 45(6): 967-978. doi: 10.13374/j.issn2095-9389.2022.06.07.005
CHEN Yuan-yuan, TANG Xiao-ning, CUI Shuai, MA Hao, SUN Jia-hui. Active oxygen antibacterial mechanism and its research progress[J]. Chinese Journal of Engineering, 2023, 45(6): 967-978. doi: 10.13374/j.issn2095-9389.2022.06.07.005
Citation: CHEN Yuan-yuan, TANG Xiao-ning, CUI Shuai, MA Hao, SUN Jia-hui. Active oxygen antibacterial mechanism and its research progress[J]. Chinese Journal of Engineering, 2023, 45(6): 967-978. doi: 10.13374/j.issn2095-9389.2022.06.07.005

活性氧抗菌機理及其研究進展

doi: 10.13374/j.issn2095-9389.2022.06.07.005
基金項目: 國家重點研發計劃重點專項資助項目(2017YFC0210303);昆明理工大學分析測試基金資助項目(2020M20192108018)
詳細信息
    通訊作者:

    E-mail: tangxn6666@sina.com

  • 中圖分類號: TB34

Active oxygen antibacterial mechanism and its research progress

More Information
  • 摘要: 首先介紹了光催化材料中活性氧的產生機制及其在抗菌方面的表現,特別指出構造異質結、引入氧空位等改性手段是提高活性氧產量的主要方式。其次總結了超氧陰離子自由基(·O${}_2^- $)、過氧化氫(H2O2)、單線態氧(1O2)和羥基自由基(·OH)的產生過程及作用機理,同時綜述了抗菌過程中四種活性氧的檢測方法,包括直接檢測方法和間接檢測方法,以及間接法所涉及的探針分子特異選擇性反應。整理了光催化材料活性氧激發總濃度的影響因素并提出針對材料提升活性氧產量的改性方向,提出了目前活性氧作用機理研究方面存在的問題,活性氧檢測方法及其與細胞具體作用研究方面存在的不足,建議以活性氧的生成鏈為指導,以多種活性氧動態平衡的體系為考察對象,在生物分子水平上細致分析活性氧的抗菌機理。最后對活性氧抗菌材料的設計與應用提出了建議思路并展望了發展前景。

     

  • 圖  1  異質結中載流子遷移途徑. (a) Ⅰ型; (b) Ⅱ型; (c) 肖特基結; (d) Z型異質結

    Figure  1.  Carrier migration path in heterojunctions: (a) type Ⅰ; (b) type Ⅱ; (c) Schottky junction; (d) Z-scheme

    SC1 is the first semiconductor, SC2 is the second semiconductor, A/D represents a pair of intermediates, CB is conduction band, VB is valance band

    圖  2  光催化氧化水和還原氧氣逐步生成活性氧[34]

    Figure  2.  Photocatalytic oxidation of water and reducing oxygen gradually generate active oxygen[34]

    圖  3  ROS在TiO2表面上的光催化產生過程

    Figure  3.  Photocatalytic generation processes of ROS on TiO2 material surfaces

    圖  4  與超氧物、單線態氧和羥基自由基的標準氧化還原電位相比,典型半導體材料的禁帶寬度值及帶邊位置

    Figure  4.  Compared with the standard redox potential of superoxide, singlet oxygen, and the hydroxyl radical, the energy band and band edge position of typecial semiconductors.

    NHE—Normal hydrogen electrode

    表  1  相關分子和活性物質的標準氧化還原電位

    Table  1.   Standard redox potential of related molecules and active substances

    Half reactionElectrode potential/V
    $\cdot\text{OH +}{\text{e} }^{-}\text{+}{\text{H} }^{\text{+} }\text{→}{\text{H} }_{\text{2} }\text{O}$+2.31
    $ {\text{O}}_{\text{3}}\text{+ 2}{\text{e}}^{-}\text{+ 2}{\text{H}}^{\text{+}}\text{→}{\text{H}}_{\text{2}}\text{O +}{\text{O}}_{\text{2}} $+2.075
    $ {\text{H}}_{\text{2}}{\text{O}}_{\text{2}}\text{+ 2}{\text{e}}^{-}\text{+ 2}{\text{H}}^{\text{+}}\text{→ 2}{\text{H}}_{\text{2}}\text{O} $+1.76
    $\cdot \text{RO +}{\text{e} }^{-}\text{+}{\text{H} }^{\text{+} }\text{→ ROH}$+1.6
    $\cdot \text{H}{\text{O} }_{\text{2} }\text{+}{\text{e} }^{-}\text{+ 2}{\text{H} }^{\text{+} }\text{→}{\text{H} }_{\text{2} }{\text{O} }_{\text{2} }$+1.06
    $\cdot\text{ROO +}{\text{e} }^{-}\text{+}{\text{H} }^{\text{+} }\text{→ ROOH}$+1.0
    ${ {}_{\text{} }{}^{\text{1} }\text{O} }_{\text{2} }\text{(g) +}{\text{e} }^{-}\text{→ }\cdot{\text{O} }_{\text{2} }^{-}$+0.64
    ${\text{H} }_{\text{2} }{\text{O} }_{\text{2} }\text{+}{\text{e} }^{-}\text{+}{\text{H} }^{\text{+} }\text{→}{\text{H} }_{\text{2} }\text{O + }\cdot{\rm{OH }}$+0.32
    $\cdot {\text{O} }_{\text{2} }^{-}\text{+}{\text{e} }^{-}\text{+}{\text{2H} }^{\text{+} }\text{→}{\text{H} }_{\text{2} }{\text{O} }_{\text{2} }$+0.36
    ${\text{O} }_{\text{2} }\text{(}\text{aq}\text{) +}{\text{e} }^{-}\text{→ }\cdot{\text{O} }_{\text{2} }^{ {-} }$?0.33
    $ {\text{H}}_{\text{2}}\text{O +}{\text{e}}^{-}\text{→}{\text{e}}_{\text{aq}}^{-} $?2.87
    下載: 導出CSV

    表  2  ROS反應鏈匯總

    Table  2.   ROS reaction chain summary

    Type of reactionEquation of reactionNumber of equation
    Reduction${\text{O} }_{\text{2} }\text{+}{\text{e} }^{-}\text{+}{\text{H} }^{\text{+} }\text{→ }\cdot{\text{HO} }_{\text{2} }$(1)
    $\cdot{\text{HO} }_{\text{2} }\text{→ }\cdot{\text{O} }_{\text{2} }^{-}\text{+}{\text{H} }^{\text{+} }$(2)
    $\cdot{\text{O} }_{\text{2} }^{-}\text{+}{\text{e} }^{-}\text{+}{\text{2H} }^{\text{+} }\text{→}{ {\text{H} }_{\text{2} }\text{O} }_{\text{2} }$(3)
    ${ {\text{H} }_{\text{2} }\text{O} }_{\text{2} }\text{+}{\text{e} }^{-}\text{→ }\cdot\text{OH +}{\text{OH} }^{-}$(4)
    $\cdot\text{OH +}{\text{e} }^{-}\text{+}{\text{H} }^{\text{+} }\text{→}{\text{H} }_{\text{2} }\text{O}$(5)
    Oxidation${\text{H} }_{\text{2} }\text{O+}{\text{h} }^{\text{+} }\text{→}\cdot\text{OH+}{\text{H} }^{\text{+} }$(6)
    $\text{2}{\text{H} }_{\text{2} }\text{O+2}{\text{h} }^{\text{+} }\text{→}{ {\text{H} }_{\text{2} }\text{O} }_{\text{2} }\text{+}{\text{2H} }^{\text{+} }$(7)
    ${ {\text{H} }_{\text{2} }\text{O} }_{\text{2} }\text{+}{\text{h} }^{\text{+} }\text{→ }\cdot{\text{O} }_{\text{2} }^{-}\text{+}{\text{2H} }^{\text{+} }$(8)
    $\cdot{\text{O} }_{\text{2} }^{-}\text{+}{\text{h} }^{\text{+} }\text{→}{}_{\text{} }{}^{\text{1} }{\text{O} }_{\text{2} }^{}$(9)
    Disproportionation reaction of superoxide radicals$\text{2}\cdot{\text{O} }_{\text{2} }^{-}\text{+}{\text{2H} }^{\text{+} }\text{→}{ {\text{H} }_{\text{2} }\text{O} }_{\text{2} }\text{+}{\text{O} }_{\text{2} }$(10)
    Dimerization of hydroxyl radical$2\cdot\text{OH →}{ {\text{H} }_{\text{2} }\text{O} }_{\text{2} }$(11)
    Haber Weiss reaction${ {\text{H} }_{\text{2} }\text{O} }_{\text{2} }\text{+ }\cdot{\text{O} }_{\text{2} }^{-}\text{→ }\cdot\text{OH +}{\text{O} }_{\text{2} }\text{+}{\text{OH} }^{-}$(12)
    下載: 導出CSV

    表  3  四種ROS性質表

    Table  3.   Four types of ROS properties

    ROSMaximum absorption wavelength
    λmax /nm
    Molar absorption coefficient,
    ε /(M?1?cm?1)
    Stable concentration range in daylight water/(mol·L?1)Life in water
    (pH 7)
    Hydroxyl radical26037010?15–10?184 × 10?5 ms
    Superoxide radical240210010?9–10?121 s
    Hydrogen peroxide20018910?7–10?1110 h
    Singlet oxygen19136.010?12–10?134 × 10?6 ms
    下載: 導出CSV

    表  4  常用探針分子的間接檢測方法

    Table  4.   Indirect detection methods of commonly used probe molecules

    ROS
    type
    ProbeDetectionLimit of detectionInfluencing factorsCitations
    ·OHDMPOESR
    ${{a} }_{\text{N} }\text{=}{{a} }_{\text{T} }\text{=1.49 mT}$
    μmol?L?1h +
    ·O${}_2^- $
    [16,34]
    ·OH4-POBNESR
    ${{a} }_{\text{N} }\text{=1.50 mT,}{\text{}{a} }_{\text{β} }^{\text{H} }\text{=0.17 mT,}{{a} }_{\text{γ} }^{\text{H} }\text{=0.03 mT}$
    μmol?L?1pH[58]
    ·OH1,4-Benzoquinone
    Spectrophotometry
    λmax = 430 nm, ?430 = 6 100 M?1cm?1
    μmol?L?1e?
    CO${}_2^- $
    [16,25]
    ·O${}_2^- $CLA
    MCLA
    Chemiluminescence
    λCLA =380 nm; λMCLA = 460 nm
    pmol?L?1other
    ROS
    [25,56]
    ·O${}_2^- $LuminolChemiluminescence
    λ = 425, 470 nm
    nmol?L?1Mn2+
    Fe3+
    other
    ROS
    pH
    [34,59]
    ·O${}_2^- $DMPOESR
    ${{a} }_{\text{N} }\text{=}{{a} }_{\text{H} }\text{= 1.49 mT}$
    μmol?L?1LpH[60]
    ·O${}_2^- $
    NBT reduction
    Spectrophotometry
    Yellow NBT becomes blue Diformazan
    λmax=530 nm, ?530 = 1 280 M?1cm?1
    μmol?L?1pH[34,40]
    ·O${}_2^- $SOD reductionTransformation
    ${\text{2H} }^{\text{+} }\text{+2}{\cdot\text{O} }_{\text{2} }^{-}\text{→5OD}{\text{O} }_{\text{2} }\text{+}{\text{H} }_{\text{2} }{\text{O} }_{\text{2} }$
    μmol?L?1Cu2+[61]
    ·O${}_2^- $Cytochrome
    Creduction
    Spectrophotometry
    $\text{Cytc}\left(\text{Fe}\left(\text{Ⅲ}\right)\right)\text{+}\cdot\text{O} _{\text{2} }^{-}\text{→}{\text{O} }_{\text{2} }\text{+Cytc}\left(\text{Fe}\left(\text{Ⅱ}\right)\right)$
    λmax = 555 nm
    μmol?L?1Cu
    Mn
    H2O2
    [62]
    H2O2DPDColoration
    λmax = 551 nm, ?551 = 21 000 M?1cm?1
    mmol?L?1Phenolic[34,40]
    H2O2LuminolChemiluminescence
    λ = 425, 470 nm
    nmol?L?1Mn2+
    Fe3+
    ·O${}_2^- $
    [63]
    H2O2POHPAAFluorescent
    λex = 425 nm, λem = 470 nm
    nmol?L?1pH[34,64]
    1O2TEMPESR
    ${a} _{\text{N} }\text{=1.62 mT}$
    μmol?L?1[34,65]
    1O2MCLAChemiluminescence
    λ = 460 nm
    pmol?L?1·O${}_2^- $[66]
    1O2DPBFFluorescent
    λmax = 410 nm
    pmol?L?1Photobleaching[67]
    Notes: aN, aT, aH, aHβ, aHγ is the ultra-fine peak cracking constant of ESR test; λ is wavelength; λmax is the maximum wavelength at which a substance can absorb light; λex is the fluorescence excitation wavelength; λem is the fluorescence emission wavelength; ?x is the molar absorption coefficient at x nm wavelength.
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Ding Z L, Zhao X L, Zhang Y J. Antibacterial performance and mechanism of inorganic salt cation. J Chem Eng Chin Univ, 2019, 33(4): 878 doi: 10.3969/j.issn.1003-9015.2019.04.014

    丁祝林, 趙曉蕾, 張躍軍. 無機鹽陽離子抗菌性能及其作用機理. 高校化學工程學報, 2019, 33(4):878 doi: 10.3969/j.issn.1003-9015.2019.04.014
    [2] Yao X Y, Tang X N, Wang X N, et al. Research progress on antibacterial mechanisms of inorganic antibacterial materials. Mater Rep, 2021, 35(1): 1105 doi: 10.11896/cldb.19090190

    姚希燕, 唐曉寧, 王曉楠, 等. 無機抗菌材料抗菌機理研究進展. 材料導報, 2021, 35(1):1105 doi: 10.11896/cldb.19090190
    [3] Tang Z M, Liu Y Y, Ni D L, et al. Biodegradable nanoprodrugs: “delivering” ROS to cancer cells for molecular dynamic therapy. Adv Mater, 2020, 32(4): 1904011 doi: 10.1002/adma.201904011
    [4] Mittler R. ROS are good. Trends Plant Sci, 2017, 22(1): 11 doi: 10.1016/j.tplants.2016.08.002
    [5] Afreen G, Shoeb M, Upadhyayula S. Effectiveness of reactive oxygen species generated from rGO/CdS QD heterostructure for photodegradation and disinfection of pollutants in waste water. Mater Sci Eng C, 2020, 108: 110372 doi: 10.1016/j.msec.2019.110372
    [6] Liu Z D, Liu X N, Lu Q F, et al. TiOF2 /TiO2 composite nanosheets: Effect of hydrothermal synthesis temperature on physicochemical properties and photocatalytic activity. J Taiwan Inst Chem En, 2019, 96: 214 doi: 10.1016/j.jtice.2018.11.013
    [7] Lyu P, Zhu J, Han C C, et al. Self-driven reactive oxygen species generation via interfacial oxygen vacancies on carbon-coated TiO2–x with versatile applications. ACS Appl Mater Interfaces, 2021, 13(1): 2033 doi: 10.1021/acsami.0c19414
    [8] Redza-Dutordoir M, Averill-Bates D A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta (BBA)Mol Cell Res, 2016, 1863(12): 2977 doi: 10.1016/j.bbamcr.2016.09.012
    [9] Almutairi B, Ali D, Alyami N, et al. Tantalum doped TiO2 nanoparticles induced cytotoxicity and DNA damage through ROS generation in human neuroblastoma cells. J King Saud Univ Sci, 2021, 33(6): 101546 doi: 10.1016/j.jksus.2021.101546
    [10] Zhou Z L, Li B, Liu X M, et al. Recent progress in photocatalytic antibacterial. ACS Appl Bio Mater, 2021, 4(5): 3909 doi: 10.1021/acsabm.0c01335
    [11] Sun X S, Zhang X D. Progress in photocatalytic selective oxidation reactions of reactive oxygen species. Chemistry, 2021, 84(1): 16 doi: 10.14159/j.cnki.0441-3776.2021.01.003

    孫賢順, 張曉東. 活性氧物種在光催化選擇性氧化中的研究進展. 化學通報, 2021, 84(1):16 doi: 10.14159/j.cnki.0441-3776.2021.01.003
    [12] Garcia-Diaz M, Huang Y Y, Hamblin M R. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods, 2016, 109: 158 doi: 10.1016/j.ymeth.2016.06.025
    [13] Horton W, Török M. Natural and Nature-Inspired Synthetic Small Molecule Antioxidants in the Context of Green Chemistry. Amsterdam: Elsevier, 2018
    [14] Vatansever F, de Melo W C M A, Avci P, et al. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev, 2013, 37(6): 955 doi: 10.1111/1574-6976.12026
    [15] Reiterer M, Milton S L. Induction of foxo3a protects turtle neurons against oxidative stress. Comp Biochem Physiol A Mol Integr Physiol, 2020, 243: 110671 doi: 10.1016/j.cbpa.2020.110671
    [16] Ganeshbabu M, Kannan N, Venkatesh P S, et al. Synthesis and characterization of BiVO4 nanoparticles for environmental applications. RSC Adv, 2020, 10(31): 18315 doi: 10.1039/D0RA01065K
    [17] Zhang W L, Rhim J W. Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packag Shelf Life, 2022, 31: 100806 doi: 10.1016/j.fpsl.2021.100806
    [18] Yu W Y, Hu C, Bai L Q, et al. Photocatalytic hydrogen peroxide evolution: What is the most effective strategy? Nano Energy, 2022, 104: 107906
    [19] Zhang X L, Cheng X P, Yu L, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun, 2016, 7: 12109 doi: 10.1038/ncomms12109
    [20] Mandal M, Sarkar M, Khan A, et al. Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) in plants– maintenance of structural individuality and functional blend. Adv Redox Res, 2022, 5: 100039 doi: 10.1016/j.arres.2022.100039
    [21] Qi Y, Ren S S Che Y, et al. Research progress of metal-organic frameworks based antibacterial materials. Acta Chimica Sin, 2020, 78(7): 613 doi: 10.6023/A20040126

    齊野, 任雙頌, 車穎, 等. 金屬有機框架抗菌材料的研究進展. 化學學報, 2020, 78(7):613 doi: 10.6023/A20040126
    [22] Ma Y W, Kuang X Y, Deng X Y, et al. The recent research progress and application of nanoparticles and ions supporting by covalent organic frameworks. Microporous Mesoporous Mater, 2022, 335: 111701 doi: 10.1016/j.micromeso.2022.111701
    [23] Jiang S K, Wang J, Zhu Z, et al. The synthesis of nano bio-MOF-1 with a systematic evaluation on the biosafety and biocompatibility. Microporous Mesoporous Mater, 2022, 334: 111773 doi: 10.1016/j.micromeso.2022.111773
    [24] Komaguchi K, Maruoka T, Nakano H, et al. Electron-transfer reaction of oxygen species on TiO2 nanoparticles induced by Sub-band-gap illumination. J Phys Chem C, 2010, 114(2): 1240 doi: 10.1021/jp909678e
    [25] Nguyen V H, Bui Q T P, Vo D V N, et al. Effective photocatalytic activity of sulfate-modified BiVO4 for the decomposition of methylene blue under LED visible light. Materials, 2019, 12(17): 2681 doi: 10.3390/ma12172681
    [26] Lakshmi Prasanna V, Vijayaraghavan R. Insight into the mechanism of antibacterial activity of ZnO: Surface defects mediated reactive oxygen species even in the dark. Langmuir, 2015, 31(33): 9155 doi: 10.1021/acs.langmuir.5b02266
    [27] Paul D, Maiti S, Sethi D P, et al. Bi-functional NiO–ZnO nanocomposite: Synthesis, characterization, antibacterial and photo assisted degradation study. Adv Powder Technol, 2021, 32(1): 131 doi: 10.1016/j.apt.2020.11.022
    [28] Karim M N, Singh M, Weerathunge P, et al. Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Appl Nano Mater, 2018, 1(4): 1694 doi: 10.1021/acsanm.8b00153
    [29] Nagendra G K, Shivaraj B W, Manjunatha C, et al. Study of structural features and antibacterial property of ZnO/CuO nanocomposites derived from solution combustion synthesis. IOP Conf Ser:Mater Sci Eng, 2019, 577(1): 012111 doi: 10.1088/1757-899X/577/1/012111
    [30] Feng Y M, Lv X Y, Ran X, et al. High-efficiency synthesis of Cu superfine particles via reducing cuprous and cupric oxides with monoethanolamine and their antimicrobial potentials. J Colloid Interface Sci, 2022, 608: 749 doi: 10.1016/j.jcis.2021.09.157
    [31] Wong K T, Kim S C, Yun K, et al. Understanding the potential band position and e?/h+ separation lifetime for Z-scheme and type-II heterojunction mechanisms for effective micropollutant mineralization: Comparative experimental and DFT studies. Appl Catal B:Environ, 2020, 273: 119034 doi: 10.1016/j.apcatb.2020.119034
    [32] Zhang M F, Zhang Z M, Jia J W, et al. Research progress in the design, fabrication and application of Z-scheme heterojunction photocatalysts. Nonferrous Met Sci Eng, 2020, 11(3): 18 doi: 10.13264/j.cnki.ysjskx.2020.03.003

    張夢凡, 張振民, 賈靜雯, 等. Z-型異質結光催化劑的設計、制備和應用研究進展. 有色金屬科學與工程, 2020, 11(3):18 doi: 10.13264/j.cnki.ysjskx.2020.03.003
    [33] Saidin S, Jumat M A, Mohd Amin N A A, et al. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. Mater Sci Eng C, 2021, 118: 111382 doi: 10.1016/j.msec.2020.111382
    [34] Nosaka Y, Nosaka A Y. Generation and detection of reactive oxygen species in photocatalysis. Chem Rev, 2017, 117(17): 11302 doi: 10.1021/acs.chemrev.7b00161
    [35] Wen L, Chen L, Zheng S M, et al. Ultrasmall biocompatible WO3?x nanodots for multi-modality imaging and combined therapy of cancers. Adv Mater, 2016, 28(25): 5072 doi: 10.1002/adma.201506428
    [36] Sarkar A, Khan G G. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale, 2019, 11(8): 3414 doi: 10.1039/C8NR09666J
    [37] Zheng Y, Su Y, Pang C, et al. Interface-enhanced oxygen vacancies of CoCuOx catalysts In situ grown on monolithic Cu foam for VOC catalytic oxidation. Environ Sci Technol, 2022, 56(3): 1905 doi: 10.1021/acs.est.1c05855
    [38] Zhou Y, Guo Y F, Li J Y, et al. Excellent antibacterial activities in the dark of ZnO nanoflakes with oxygen vacancies on exposed {2110}facets. J Mater Chem A, 2020, 8(23): 11511 doi: 10.1039/C9TA14044A
    [39] Wang D, Xu J Q, Zhang H J, et al. Anisotropic scattering caused by apical oxygen vacancies in thin films of overdoped high-temperature cuprate superconductors. Phys Rev Lett, 2022, 128(13): 137001 doi: 10.1103/PhysRevLett.128.137001
    [40] Burns J M, Cooper W J, Ferry J L, et al. Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquat Sci, 2012, 74(4): 683 doi: 10.1007/s00027-012-0251-x
    [41] Salvador P. Mechanisms of water photooxidation at n-TiO2 rutile single crystal oriented electrodes under UV illumination in competition with photocorrosion. Prog Surf Sci, 2011, 86(1-2): 41 doi: 10.1016/j.progsurf.2010.10.002
    [42] Godoy-Gallardo M, Eckhard U, Delgado L M, et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact Mater, 2021, 6(12): 4470 doi: 10.1016/j.bioactmat.2021.04.033
    [43] Basu P, Chakraborty J, Ganguli N, et al. Defect-engineered MoS2 nanostructures for reactive oxygen species generation in the dark: Antipollutant and antifungal performances. ACS Appl Mater Interfaces, 2019, 11(51): 48179 doi: 10.1021/acsami.9b12988
    [44] Ishibashi K I, Fujishima A, Watanabe T, et al. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun, 2000, 2(3): 207 doi: 10.1016/S1388-2481(00)00006-0
    [45] Sun L N, Li Y, Guo H T, et al. Preparation of nitrogen and iron Co-doped carbon nanoparticles and their applications in detection of hydrogen peroxide and glucose. Chin J Appl Chem, 2020, 37(3): 350 doi: 10.11944/j.issn.1000-0518.2020.03.190256

    (孫莉娜, 李龑, 郭漢濤, 等. 氮、鐵共摻雜碳納米粒子的制備及在過氧化氫和葡萄糖檢測中的應用. 應用化學, 2020, 37(3):350 doi: 10.11944/j.issn.1000-0518.2020.03.190256
    [46] Ku J W K, Gan Y H. New roles for glutathione: Modulators of bacterial virulence and pathogenesis. Redox Biol, 2021, 44: 102012 doi: 10.1016/j.redox.2021.102012
    [47] Daimon T, Nosaka Y. Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence. J Phys Chem C, 2007, 111(11): 4420 doi: 10.1021/jp070028y
    [48] Mascio P D, Martinez G R, Miyamoto S, et al. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem Rev, 2019, 119(3): 2043 doi: 10.1021/acs.chemrev.8b00554
    [49] Wang Y, Patil K M, Yan S, et al. Nanopore sequencing accurately identifies the mutagenic DNA lesion O6-carboxymethyl guanine and reveals its behavior in replication. Angew Chem Int Ed, 2019, 58(25): 8432 doi: 10.1002/anie.201902521
    [50] Shi J M. Theoretical Studies on the Reaction Mechanism of Superoxide Radical and Singlet Oxygen Oxidative Damage to 2’-Deoxyguanosine [Dissertation]. Zhengzhou: Zhengzhou University, 2014

    石婧明. 超氧陰離子和單線態氧氧化損傷2’-脫氧鳥苷反應機理的理論研究[學位論文]. 鄭州: 鄭州大學, 2014
    [51] Cui Z K, Zhang L X, Wang Y, et al. Plasmon excitation facilitating generation of electrons and reactive oxygen species for broad spectrum photocatalytic activity. Appl Surf Sci, 2022, 584: 152655 doi: 10.1016/j.apsusc.2022.152655
    [52] Mutalik C, Okoro G, Krisnawati D I, et al. Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. J Colloid Interface Sci, 2022, 607: 1825 doi: 10.1016/j.jcis.2021.10.019
    [53] Lv Q L, Zhang M, Yue N N, et al. Applications and progresses in determination of singlet oxygen. Chem Anal Meterage, 2008, 17(3): 74 doi: 10.3969/j.issn.1008-6145.2008.03.027

    呂慶鑾, 張苗, 岳寧寧, 等. 單線態氧的檢測及分析應用研究進展. 化學分析計量, 2008, 17(3):74 doi: 10.3969/j.issn.1008-6145.2008.03.027
    [54] Lin H Y, Chen D F, Wang M, et al. Influence of pulse-height discrimination threshold for photon counting on the accuracy of singlet oxygen luminescence measurement. J Opt, 2011, 13(12): 125301 doi: 10.1088/2040-8978/13/12/125301
    [55] Wang H S. Development of fluorescent and luminescent probes for reactive oxygen species. TrAC Trends in Analytical Chemistry, 2016, 85: 181 doi: 10.1016/j.trac.2016.09.006
    [56] Yu W C, Zhao L X. Chemiluminescence detection of reactive oxygen species generation and potential environmental applications. Trac Trends Anal Chem, 2021, 136: 116197 doi: 10.1016/j.trac.2021.116197
    [57] Iranifam M, Toolooe Gardeh Rasht M, Al Lawati H A J. CuS nanoparticles-enhanced luminol-O2 chemiluminescence reaction used for determination of paracetamol and vancomycin. Spectrochimica Acta Part A:Mol Biomol Spectrosc, 2021, 261: 120038 doi: 10.1016/j.saa.2021.120038
    [58] Matos J, Arcibar-Orozco J, Poon P S, et al. Influence of phosphorous upon the formation of DMPO-OH and POBN-O $ {}_2^- $ spin-trapping adducts in carbon-supported P-promoted Fe-based photocatalysts. J Photochem Photobiol A Chem, 2020, 391: 112362 doi: 10.1016/j.jphotochem.2020.112362
    [59] Chen F Q, Zhang Y, Li T, et al. Discovering ester and ether derivatives of luminol as advanced chemiluminescence probes. Chin Chem Lett, https://doi.org/10.1016/j.cclet.2022.05.010
    [60] Peng S Y, Liu X H, Chen Q W, et al. Harnessing in situ glutathione for effective ROS generation and tumor suppression via nanohybrid-mediated catabolism dynamic therapy. Biomaterials, 2022, 281: 121358 doi: 10.1016/j.biomaterials.2021.121358
    [61] Deng Z F, Rui Q, Yin X, et al. In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase. Anal Chem, 2008, 80(15): 5839 doi: 10.1021/ac800213x
    [62] Mothilal K K, Inbaraj J J, Gandhidasan R, et al. Photosensitization with anthraquinone derivatives: Optical and EPR spin trapping studies of photogeneration of reactive oxygen species. J Photochem Photobiol A Chem, 2004, 162(1): 9 doi: 10.1016/S1010-6030(03)00290-9
    [63] Vakh C, Kuzmin A, Sadetskaya A, et al. Cobalt-doped hydroxyapatite nanoparticles as a new eco-friendly catalyst of luminol–H2O2 based chemiluminescence reaction: Study of key factors, improvement the activity and analytical application. Spectrochim Acta A Mol Biomol Spectrosc, 2020, 237: 118382 doi: 10.1016/j.saa.2020.118382
    [64] Yin M Y, Wan Y Q, Li S, et al. Carbon nitride-doped melamine-silver adsorbents with peroxidase-like catalysis and visible-light photocatalysis: Colorimetric detection and detoxification removal of total mercury. J Hazard Mater, 2021, 408: 124978 doi: 10.1016/j.jhazmat.2020.124978
    [65] Xiang Y M, Zhou Q L, Li Z Y, et al. A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing. J Mater Sci Technol, 2020, 57: 1 doi: 10.1016/j.jmst.2020.05.016
    [66] Krajczewski J, Rucińska K, Townley H E, et al. Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen. Photodiagnosis Photodyn Ther, 2019, 26: 162 doi: 10.1016/j.pdpdt.2019.03.016
    [67] Wu M Q, Zhang Z Y, Liu Z R, et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today, 2021, 37: 101104 doi: 10.1016/j.nantod.2021.101104
    [68] Li Y, Zhang W, Niu J F, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 2012, 6(6): 5164 doi: 10.1021/nn300934k
    [69] Gandotra R, Chen Y R, Murugesan T, et al. Highly efficient and morphology dependent antibacterial activities of photocatalytic CuxO/ZnO nanocomposites. J Alloys Compd, 2021, 873: 159769 doi: 10.1016/j.jallcom.2021.159769
    [70] Zhao Y, Zhang Z Z, Pan Z, et al. Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1(3): 20210089 doi: 10.1002/EXP.20210089
    [71] Okeke I S, Agwu K K, Ubachukwu A A, et al. Influence of transition metal doping on physiochemical and antibacterial properties of ZnO Nanoparticles: A review. Appl Surf Sci Adv, 2022, 8: 100227 doi: 10.1016/j.apsadv.2022.100227
    [72] He W W, Jia H M, Wamer W G, et al. Predicting and identifying reactive oxygen species and electrons for photocatalytic metal sulfide micro-nano structures. J Catal, 2014, 320: 97 doi: 10.1016/j.jcat.2014.10.004
    [73] Yu Y J, Yang J X, Wang X L, et al. Atomic Fe sites doped two-dimensional (001) TiO2 nanosheets as an effective photo-response support in methanol electro-oxidation. Surf Interfaces, 2021, 25: 101231 doi: 10.1016/j.surfin.2021.101231
    [74] Mu J S, Wang Y, Zhao M, et al. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun, 2012, 48(19): 2540 doi: 10.1039/c2cc17013b
    [75] Liu Y F, Nie N, Tang H F, et al. Effective antibacterial activity of degradable copper-doped phosphate-based glass nanozymes. ACS Appl Mater Interfaces, 2021, 13(10): 11631 doi: 10.1021/acsami.0c22746
    [76] Zhao W C, Adeel M, Zhang P, et al. A critical review on surface-modified nano-catalyst application for the photocatalytic degradation of volatile organic compounds. Environ Sci:Nano, 2022, 9(1): 61 doi: 10.1039/D1EN00955A
    [77] Liang Y, Li W, Wang X, et al. TiO2–ZnO/Au ternary heterojunction nanocomposite: Excellent antibacterial property and visible-light photocatalytic hydrogen production efficiency. Ceram Int, 2022, 48(2): 2826 doi: 10.1016/j.ceramint.2021.10.072
  • 加載中
圖(4) / 表(4)
計量
  • 文章訪問數:  596
  • HTML全文瀏覽量:  534
  • PDF下載量:  114
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-06-07
  • 網絡出版日期:  2022-08-25
  • 刊出日期:  2023-05-31

目錄

    /

    返回文章
    返回