<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

超高流動性改性鎂渣基充填材料的性能

劉浪 謝磊 朱夢博 阮仕山 孫偉吉 邵成成

劉浪, 謝磊, 朱夢博, 阮仕山, 孫偉吉, 邵成成. 超高流動性改性鎂渣基充填材料的性能[J]. 工程科學學報, 2023, 45(8): 1324-1334. doi: 10.13374/j.issn2095-9389.2022.06.06.001
引用本文: 劉浪, 謝磊, 朱夢博, 阮仕山, 孫偉吉, 邵成成. 超高流動性改性鎂渣基充填材料的性能[J]. 工程科學學報, 2023, 45(8): 1324-1334. doi: 10.13374/j.issn2095-9389.2022.06.06.001
LIU Lang, XIE Lei, ZHU Meng-bo, RUAN Shi-shan, SUN Wei-ji, SHAO Cheng-cheng. Properties of ultrahigh fluidity modified magnesium slag-based filling materials[J]. Chinese Journal of Engineering, 2023, 45(8): 1324-1334. doi: 10.13374/j.issn2095-9389.2022.06.06.001
Citation: LIU Lang, XIE Lei, ZHU Meng-bo, RUAN Shi-shan, SUN Wei-ji, SHAO Cheng-cheng. Properties of ultrahigh fluidity modified magnesium slag-based filling materials[J]. Chinese Journal of Engineering, 2023, 45(8): 1324-1334. doi: 10.13374/j.issn2095-9389.2022.06.06.001

超高流動性改性鎂渣基充填材料的性能

doi: 10.13374/j.issn2095-9389.2022.06.06.001
基金項目: 國家自然科學基金資助項目(52074212,51674188);陜西省自然科學基礎研究計劃資助項目(2015JQ5187);陜西省教育廳科研項目(15JK1466,19JK0543)
詳細信息
    通訊作者:

    E-mail: liulang@xust.edu.cn

  • 中圖分類號: TD803

Properties of ultrahigh fluidity modified magnesium slag-based filling materials

More Information
  • 摘要: 針對超遠距離輸送過程中,特殊管路布置等充填技術中堵管、爆管風險大,管道磨損嚴重等問題,采用改性鎂渣(MMS)和粉煤灰(FA)在不同配比下制備超高流動性新型膏體充填材料(UH-MFPB),探究其早期強度、流動性以及流變特性,并建立流動性和流變參數的相關關系。研究結果表明:(1)UH-MFPB樣品的單軸抗壓強度隨FA含量增加呈先增大后減小的趨勢。當FA質量分數為20%時,樣品的抗壓強度最大,養護28 d可達到6.759 MPa,后期強度持續增加;(2)新鮮UH-MFPB料漿的坍落度為25.6~29.2 cm,擴展度為61~93.1 cm,具有很好的流動性;(3)新鮮UH-MFPB料漿的流變特性符合Herschel?Bulkley模型,流變參數(屈服應力、塑性黏度和觸變性)隨FA含量的增大而減小,且FA質量分數達到20%時,料漿出現剪切增稠的現象;(4)新鮮UH-MFPB料漿的流動性和流變參數滿足二次多項式關系,呈現出負相關性。

     

  • 圖  1  原材料粒徑分布圖. (a)改性鎂渣粒徑分布圖; (b)粉煤灰粒徑分布圖

    Figure  1.  Particle size distribution of raw materials: (a) particle size distribution of modified magnesium slag; (b)particle size distribution of fly ash

    圖  2  改性鎂渣和粉煤灰XRD和SEM圖. (a)改性鎂渣XRD; (b)粉煤灰XRD; (c)改性鎂渣SEM; (d)粉煤灰SEM

    Figure  2.  XRD and SEM images of modified magnesium slag and fly ash: (a) XRD of modified magnesium slag; (b) XRD of fly ash; (c) SEM of modified magnesium slag; (d) SEM of fly ash

    圖  3  UH-MFPB樣品的單軸抗壓強度: (a)粉煤灰含量;(b)養護齡期

    Figure  3.  Uniaxial compressive strength of UH-MFPB samples: (a) fly ash content; (b) curing period

    圖  4  新鮮UH-MFPB料漿的坍落度和擴展度

    Figure  4.  Slump and spread of fresh UH-MFPB slurry

    圖  5  剪切速率對剪切應力的影響

    Figure  5.  Effect of shear rate on shear stress

    圖  6  料漿H?B模型擬合圖

    Figure  6.  H–B model fitting diagram of slurry

    圖  7  剪切速率對塑性黏度的影響

    Figure  7.  Effect of shear rate on the plastic viscosity

    圖  8  動態黏度Cross模型擬合圖

    Figure  8.  Fitting diagram of the dynamic viscosity using the Cross viscosity model

    圖  9  觸變環示意圖

    Figure  9.  Schematic of the thixotropic ring

    圖  10  新鮮UH-MFPB料漿觸變環的面積

    Figure  10.  Area of the thixotropic ring in fresh UH-MFPB

    圖  11  屈服應力與坍落度的關系

    Figure  11.  Relationship between yield stress and slump

    圖  12  塑性黏度與擴展度的關系

    Figure  12.  Relationship between plastic viscosity and spread

    表  1  改性鎂渣與粉煤灰的化學組成(質量分數)

    Table  1.   Chemical composition of modified magnesium slag and fly ash(mass fraction) %

    Raw materialsSiO2CaOAl2O3MgOFe2O3P2O5SO3MnOTiO2
    MMS19.2141.180.823.782.590.030.020.060.06
    FA40.367.8116.220.9812.540.192.680.130.97
    下載: 導出CSV

    表  2  試驗方案

    Table  2.   Experimental procedure

    NumberMass ratio of MMS:FAMass fraction/%Curing time/d
    FA010∶0743, 7, 28, 56
    FA109∶1
    FA208∶2
    FA307∶3
    FA406∶4
    FA505∶5
    下載: 導出CSV

    表  3  基于H?B模型下的新鮮UH-MFPB料漿流變參數

    Table  3.   Rheological parameters of fresh UH-MFPB slurry based on the H–B model

    MMS:FAH–B rheological equationYield stress/PaPlastic viscosity/(Pa·s)nCorrelation coefficient, R2Critical shear rate/s?1P/ (Pa? s?1)
    10∶0$ \tau {\text{ = }}53.71{\text{ + }}0.93{\gamma ^{0.94}} $53.710.930.940.99668447
    9∶1$ \tau {\text{ = }}49.65{\text{ + }}0.66{\gamma ^{0.94}} $49.650.660.950.98027721
    8∶2$ \tau {\text{ = }}27.56{\text{ + }}0.68{\gamma ^{1.08}} $27.560.681.080.9992847370
    7∶3$ \tau {\text{ = }}26.19{\text{ + }}0.39{\gamma ^{1.21}} $26.190.391.210.9982776907
    6∶4$ \tau {\text{ = }}24.14{\text{ + }}0.27{\gamma ^{1.26}} $24.140.271.260.9970656172
    5∶5$ \tau {\text{ = }}19.22{\text{ + }}0.22{\gamma ^{1.27}} $19.220.221.270.9981615144
    下載: 導出CSV

    表  4  新鮮UH-MFPB料漿的Cross黏度模型參數

    Table  4.   Cross viscosity model parameters of fresh UH-MFPB slurry

    MMS:FACross viscosity model equationInitial shear viscosity/(Pa·s)Infinite shear viscosity/(Pa·s)Coefficient of
    viscosity, Kc
    Flow
    index, nc
    Correlation
    coefficient, R2
    SE/%
    10∶0$\mu {\text{ = } }{\mu _\infty }{\text{ + } }\dfrac{ { {\mu _0}-}{\mu _\infty } } { {\left[ {1{\text{ + } }{ {\left( { {K_{\text{c} } }\gamma } \right)}^{ {n_c} } } } \right]} }$216.130.763.351.040.99764.77
    9∶186.640.890.961.270.99557.79
    8∶235.961.230.671.400.990111.66
    7∶331.081.220.621.440.991910.99
    6∶432.031.030.811.310.99627.41
    5∶528.200.791.061.170.99518.12
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Hu B N, Liu P L, Cui F, et al. Review and development status of backfill coal mining technology in China. Coal Sci Technol, 2020, 48(9): 39

    胡炳南, 劉鵬亮, 崔鋒, 等. 我國充填采煤技術回顧及發展現狀. 煤炭科學技術, 2020, 48(9):39
    [2] Liu L, Fang Z Y, Zhang B, et al. Development history and basic categories of mine backfill technology. Met Mine, 2021(3): 1

    劉浪, 方治余, 張波, 等. 礦山充填技術的演進歷程與基本類別. 金屬礦山, 2021(3):1
    [3] Wang M, Liu P, Shang S Y, et al. Numerical and experimental studies on the cooling performance of backfill containing phase change materials. Build Environ, 2022, 218: 109155 doi: 10.1016/j.buildenv.2022.109155
    [4] Zhu M B, Cheng J Y, Zhang Z. Quality control of microseismic P-phase arrival picks in coal mine based on machine learning. Comput Geosci, 2021, 156: 104862 doi: 10.1016/j.cageo.2021.104862
    [5] Zhu M B, Liu L, Wang S M, et al. Short- and long-walls backfilling pillarless coal mining method. J Min Safety Eng, https://doi.org/10.13545/j.cnki.jmse.2021.0580

    朱夢博, 劉浪, 王雙明, 等. 短−長壁工作面充填無煤柱開采方法研究. 采礦與安全工程學報, https://doi.org/10.13545/j.cnki.jmse.2021.0580
    [6] Yang Z Q, Chen D X, Gao Q, et al. Key technologies in long-distance pipeline transportation of coarse aggregate coarse aggregate. J Guangxi Univ Nat Sci Ed, 2016, 41(4): 1306

    楊志強, 陳得信, 高謙, 等. 粗骨料充填料漿長距離管道輸送關鍵技術. 廣西大學學報(自然科學版), 2016, 41(4):1306
    [7] Liu F T, Ding J F, Chen G P, et al. Study on the high-density gravity-flow backfilling technology of deep-well long-distance with large time line. Met Mine, 2014(2): 40

    劉豐韜, 丁劍鋒, 陳國平, 等. 深井長距離大倍線高濃度自流充填技術研究. 金屬礦山, 2014(2):40
    [8] Yang T Y, Qiao D P, Wang J, et al. Numerical simulation and new model of pipeline transportation resistance of waste rock- aeolian sand high concentration slurry. Chin J Nonferrous Met, 2021, 31(1): 234

    楊天雨, 喬登攀, 王俊, 等. 廢石?風砂高濃度料漿管道輸送數值模擬及管輸阻力新模型. 中國有色金屬學報, 2021, 31(1):234
    [9] Zhang L F, Wu A X, Wang H J. Effects and mechanism of pumping agent on rheological properties of highly muddy paste. Chin J Eng, 2018, 40(8): 918

    張連富, 吳愛祥, 王洪江. 泵送劑對高含泥膏體流變特性影響及機理. 工程科學學報, 2018, 40(8):918
    [10] Sheng J, Wan W, Zheng B K, et al. Downward pumping filling of coarse aggregate technology under long distance and complex conditions. Min Res Dev, 2022, 42(3): 140

    盛佳, 萬文, 鄭伯坤, 等. 粗骨料長距離復雜工況下向泵送充填技術與應用. 礦業研究與開發, 2022, 42(3):140
    [11] Luo T, Wang Q, Zhuang S Y. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Technol, 2019, 345: 54 doi: 10.1016/j.powtec.2018.12.094
    [12] Chen J, Liang Y Z, Wang J, et al. Research on transport characteristic of high sand content filling material. Bull Chin Ceram Soc, 2020, 39(1): 194

    陳杰, 梁楊芝, 王俊, 等. 高沙充填材料的輸送性能研究. 硅酸鹽通報, 2020, 39(1):194
    [13] Lü C, Liu J P, Tian Y, et al. Influence of hydrophobic minerals on fluidity and strength of high-strength self-compacting concrete. J Southeast Univ Nat Sci Ed, 2022, 52(2): 263

    呂晨, 劉加平, 田義, 等. 疏水礦物對高強自密實混凝土流動性能及強度的影響. 東南大學學報(自然科學版), 2022, 52(2):263
    [14] Xue Z L, Zhang Y Z, Gan D Q, et al. Effect of pumping agent on fluidity of filling slurry and mechanical properties of filling body. Met Mine, 2020(11): 25

    薛振林, 張友志, 甘德清, 等. 泵送劑摻量對充填料漿流動性能及充填體力學性能的影響. 金屬礦山, 2020(11):25
    [15] Liu L, Ruan S S, Qi C C, et al. Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill. J Clean Prod, 2021, 279: 123684 doi: 10.1016/j.jclepro.2020.123684
    [16] Liu L, Ruan S S, Fang Z Y, et al. Modification of magnesium slag and its application in the field of mine filling. J China Coal Soc, 2021, 46(12): 3833

    劉浪, 阮仕山, 方治余, 等. 鎂渣的改性及其在礦山充填領域的應用探索. 煤炭學報, 2021, 46(12):3833
    [17] Dai X D, Aydin S, Yardimci M Y, et al. Rheology, early-age hydration and microstructure of alkali-activated GGBFS-Fly ash-limestone mixtures. Cem Concr Compos, 2021, 124: 104244 doi: 10.1016/j.cemconcomp.2021.104244
    [18] Xie Y J, Chen X B, Ma K L, et al. Effects of limestone powder on rheological properties of cement-flyash mortar. J Railw Sci Eng, 2015, 12(1): 59

    謝友均, 陳小波, 馬昆林, 等. 石灰石粉對水泥-粉煤灰砂漿流變行為影響的研究. 鐵道科學與工程學報, 2015, 12(1):59
    [19] Li J, Zhang S Q, Wang Q, et al. Feasibility of using fly ash-slag-based binder for mine backfilling and its associated leaching risks. J Hazard Mater, 2020, 400: 123191 doi: 10.1016/j.jhazmat.2020.123191
    [20] Liu L, Fang Z Y, Wang M, et al. Experimental and numerical study on rheological properties of ice-containing cement paste backfill slurry. Powder Technol, 2020, 370: 206 doi: 10.1016/j.powtec.2020.05.024
    [21] Zhang X, Zhang L. Application of rheological theory in cement-based materials. Fly Ash Compr Util, 2013, 26(4): 9

    張雄, 張蕾. 流變學理論在水泥基材料中的應用. 粉煤灰綜合利用, 2013, 26(4):9
    [22] Mahboub K E, Mbonimpa M, Belem T, et al. Rheological characterization of cemented paste backfills containing superabsorbent polymers (SAPs). Constr Build Mater, 2022, 317: 125863 doi: 10.1016/j.conbuildmat.2021.125863
    [23] Chen K Y, Wu D Z, Hu J T. Advances in the reaction mechanism and preparation parameters of geopolymer binder material based on components. Bull Chin Ceram Soc, 2020, 39(7): 2033

    陳柯宇, 吳大志, 胡俊濤. 基于組分的地聚合物膠凝材料反應機理及其制備參數的研究進展. 硅酸鹽通報, 2020, 39(7):2033
    [24] Ouattara D, Mbonimpa M, Yahia A, et al. Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers. Constr Build Mater, 2018, 190: 294 doi: 10.1016/j.conbuildmat.2018.09.066
    [25] Nehdi M, Rahman M A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction. Cem Concr Res, 2004, 34(11): 1993 doi: 10.1016/j.cemconres.2004.02.020
    [26] Chen Y J, Han F L, Luo Z. Solidification/stabilization of heavy mental Cu and Cd in waste acid residue by magnesium slag. Inorg Chem Ind, 2015, 47(7): 48

    (陳玉潔, 韓鳳蘭, 羅釗. 鎂渣固化/穩定污酸渣中重金屬銅和鎘. 無機鹽工業, 2015, 47(7):48
    [27] Cui Z Z, Yang W W, Zhang D P. Experimental study on pozzolanic activity of magnesium slag. Ningxia Eng Technol, 2007, 6(2): 160

    崔自治, 楊維武, 張冬平. 鎂渣火山灰活性試驗研究. 寧夏工程技術, 2007, 6(2):160
    [28] Guo Z G, Jiang T, Zhang J, et al. Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume. Constr Build Mater, 2020, 231: 117115 doi: 10.1016/j.conbuildmat.2019.117115
    [29] Li X, Yan P Y. Influence of fly ash content on alkalinity of pore solution and microstructure of cement pastes. J Build Mater, 2010, 13(6): 787

    李響, 閻培渝. 粉煤灰摻量對水泥孔溶液堿度與微觀結構的影響. 建筑材料學報, 2010, 13(6):787
    [30] Zhao J H, Liu L. Research into rheological properties of backfill paste based on the slump test. J Xian Univ Archit &Technol Nat Sci Ed, 2015, 47(2): 192

    趙建會, 劉浪. 基于坍落度的充填膏體流變特性研究. 西安建筑科技大學學報(自然科學版), 2015, 47(2):192
    [31] Shen H M, Wu A X, Jiang L C, et al. Small cylindrical slump test for unclassified tailings paste. J Central South Univ Sci Technol, 2016, 47(1): 204

    沈慧明, 吳愛祥, 姜立春, 等. 全尾砂膏體小型圓柱塌落度檢測. 中南大學學報(自然科學版), 2016, 47(1):204
    [32] Panchal S, Deb D, Sreenivas T. Variability in rheology of cemented paste backfill with hydration age, binder and superplasticizer dosages. Adv Powder Technol, 2018, 29(9): 2211 doi: 10.1016/j.apt.2018.06.005
    [33] Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Central South Univ Sci Technol, 2018, 49(10): 2519

    王少勇, 吳愛祥, 阮竹恩, 等. 基于環管實驗的膏體流變特性及影響因素. 中南大學學報(自然科學版), 2018, 49(10):2519
    [34] Xiao J, Wang D F, Zuo S H, et al. Shear protocols of cement paste based on steady rheological test. Bull Chin Ceram Soc, 2017, 36(7): 2387

    肖佳, 王大富, 左勝浩, 等. 基于穩態流變測試的水泥漿體剪切模式研究. 硅酸鹽通報, 2017, 36(7):2387
    [35] Wu A X, Ruan Z E, Wang J D. Rheological behavior of paste in metal mines. Int J Miner Metall Mater, 2022, 29(4): 717 doi: 10.1007/s12613-022-2423-6
    [36] Jiang D B, Li X G, Lv Y, et al. Utilization of limestone powder and fly ash in blended cement: rheology, strength and hydration characteristics. Constr Build Mater, 2020, 232: 117228 doi: 10.1016/j.conbuildmat.2019.117228
    [37] Xie Y J, Chen X B, Ma K L, et al. Effects of limestone powder on shear thinning and shear thickening of cement-fly ash paste. J Build Mater, 2015, 18(5): 824

    謝友均, 陳小波, 馬昆林, 等. 石灰石粉對水泥-粉煤灰漿體剪切變稀和剪切增稠的影響. 建筑材料學報, 2015, 18(5):824
    [38] Grzeszczyk S, Lipowski G. Effect of content and particle size distribution of high-calcium fly ash on the rheological properties of cement pastes. Cem Concr Res, 1997, 27(6): 907 doi: 10.1016/S0008-8846(97)00073-2
    [39] Ma K L, Long G C, Xie Y J, et al. Factors on affecting plastic viscosity of cement–fly ash–limestone compound pastes. J Chin Ceram Soc, 2013, 41(11): 1481

    馬昆林, 龍廣成, 謝友均, 等. 水泥–粉煤灰–石灰石粉漿體塑性黏度的影響因素. 硅酸鹽學報, 2013, 41(11):1481
    [40] Hoffman R L. Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol, 1998, 42(1): 111 doi: 10.1122/1.550884
    [41] Egres R G, Nettesheim F, Wagner N J. Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J Rheol, 2006, 50(5): 685 doi: 10.1122/1.2213245
    [42] Hoffman R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. observation of a flow instability. Trans Soc Rheol, 1972, 16(1): 155
    [43] Brady J F, Bossis G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J Fluid Mech, 1985, 155: 105 doi: 10.1017/S0022112085001732
    [44] Xie Y J, Chen X B, Ma K L, et al. Effects of fly ash on shearing thinning and thickening of cement paste. J Chin Ceram Soc, 2015, 43(8): 1040

    謝友均, 陳小波, 馬昆林, 等. 粉煤灰對水泥漿體的剪切變稀和剪切增稠作用. 硅酸鹽學報, 2015, 43(8):1040
    [45] Ma K L, Feng J, Long G C, et al. Rheological characteristic and its mechanism of cement-fly ash paste. J Railw Sci Eng, 2017, 14(3): 465

    馬昆林, 馮金, 龍廣成, 等. 水泥?粉煤灰漿體流變特性及其機理研究. 鐵道科學與工程學報, 2017, 14(3):465
    [46] Wang Q, Cui X Y, Wang J, et al. Effect of fly ash on rheological properties of graphene oxide cement paste. Constr Build Mater, 2017, 138: 35 doi: 10.1016/j.conbuildmat.2017.01.126
    [47] Liu Y, Li M Y, Yan P Y. Effect of mineral admixtures on rheological properties and thixotropy of binder paste. J Chin Ceram Soc, 2019, 47(5): 594

    劉宇, 黎夢圓, 閻培渝. 礦物摻合料對膠凝材料漿體流變性能和觸變性的影響. 硅酸鹽學報, 2019, 47(5):594
    [48] Jiang H Q, Fall M, Yilmaz E, et al. Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy. Powder Technol, 2020, 372: 258 doi: 10.1016/j.powtec.2020.06.009
    [49] Liu L. Research on Proportion Optimization and Flow Characteristic of Backfill Paste in Mine Sites [Dissertation]. Changsha: Central South University, 2013

    劉浪. 礦山充填膏體配比優化與流動特性研究[學位論文]. 長沙: 中南大學, 2013
    [50] Tang X S, Cai Y B, Wen J B, et al. Correlation between slump flow and rheological parameters of compound pastes with high volume of ground slag. J Chin Ceram Soc, 2014, 42(5): 648

    唐修生, 蔡躍波, 溫金保, 等. 磨細礦渣復合漿體流變參數與流動度的相關性. 硅酸鹽學報, 2014, 42(5):648
    [51] Celik F, Canakci H. An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA). Constr Build Mater, 2015, 91: 187 doi: 10.1016/j.conbuildmat.2015.05.025
    [52] Lachemi M, Hossain K M A, Lambros V, et al. Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste. Cem Concr Res, 2004, 34(2): 185 doi: 10.1016/S0008-8846(03)00233-3
    [53] Li H Y. Study on Time-dependent Changes in Flow Properties of Cemented Coal Gangue Backfill Materials [Dissertation]. Taiyuan: Taiyuan University of Technology, 2019

    李化運. 煤矸石膠結充填材料流動性能經時變化研究[學位論文]. 太原: 太原理工大學, 2019
    [54] Nan X L, Ji J R, Wei D B, et al. Influence of limestone powder on rheological properties of ultrahigh strength cement-based materials. J Chongqing Jiaotong Univ Nat Sci, 2022, 41(5): 100

    南雪麗, 姬建瑞, 魏定邦, 等. 石灰石粉對超高強水泥基材料流變特性的影響. 重慶交通大學學報(自然科學版), 2022, 41(5):100
  • 加載中
圖(12) / 表(4)
計量
  • 文章訪問數:  325
  • HTML全文瀏覽量:  147
  • PDF下載量:  61
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-06-06
  • 網絡出版日期:  2022-08-04
  • 刊出日期:  2023-08-25

目錄

    /

    返回文章
    返回