-
摘要: 針對超遠距離輸送過程中,特殊管路布置等充填技術中堵管、爆管風險大,管道磨損嚴重等問題,采用改性鎂渣(MMS)和粉煤灰(FA)在不同配比下制備超高流動性新型膏體充填材料(UH-MFPB),探究其早期強度、流動性以及流變特性,并建立流動性和流變參數的相關關系。研究結果表明:(1)UH-MFPB樣品的單軸抗壓強度隨FA含量增加呈先增大后減小的趨勢。當FA質量分數為20%時,樣品的抗壓強度最大,養護28 d可達到6.759 MPa,后期強度持續增加;(2)新鮮UH-MFPB料漿的坍落度為25.6~29.2 cm,擴展度為61~93.1 cm,具有很好的流動性;(3)新鮮UH-MFPB料漿的流變特性符合Herschel?Bulkley模型,流變參數(屈服應力、塑性黏度和觸變性)隨FA含量的增大而減小,且FA質量分數達到20%時,料漿出現剪切增稠的現象;(4)新鮮UH-MFPB料漿的流動性和流變參數滿足二次多項式關系,呈現出負相關性。Abstract: With its continuous application and promotion, filling technology, such as an ultra-long distance and special pipeline arrangement, faces an increasing demand, and the demand for the fluidity of filling material is also rising. Aiming at the large risk of blocking pipes and tubes in filling technology, the serious wear of pipelines, etc., and using modified magnesium slag (MMS) and fly ash (FA) to prepare high liquidity under different ratios of a new type of paste filling material (UH-MFPB), this paper probes this material’s early strength, liquidity, and rheological properties, and establishes the relationship between liquidity and rheological parameters. First, MMS and FA samples were prepared at different ratios of certain concentrations and cured for 3, 7, 28, and 56 days to measure their uniaxial compressive strength. The uniaxial compressive strength of a UH-MFPB sample increases first and then decreases with increasing FA content, and gradually increases with curing age. When FA content is 20%, the compressive strength of the sample reaches the maximum. At 3, 7, 28, and 56 days, the intensity was 1.335, 2.161, 6.759, and 12.104 MPa, respectively. Then, the slump and spread of fresh UH-MFPB slurry were measured. They increased with FA content, with a slump of 25.6–29.2 cm and a spread of 61–93.1 cm, showing good fluidity. Then, the rheological properties of fresh UH-MFPB slurry were measured in accordance with the Herschel–Bulkley model, and the relationship between shear stress and plastic viscosity and the shear rate was discussed, as well as the effect of FA content on rheological parameters and mechanisms. The shear stress is found to increase with the shear rate, and the viscosity decreases exponentially and then slowly with increasing shear rate. Rheological parameters (yield stress, plastic viscosity, and thixotropy) decrease with increasing FA content, and the slurry undergoes shear thickening when FA content reaches 20%. The Cross viscosity model was used to fit the viscosity curve of fresh slurry. Finally, the correlation between the fluidity and rheological parameters of fresh UH-MFPB slurry was discussed, and the yield stress was found to correlate negatively with the slump, plastic viscosity, and expansion, which were quadratic polynomials. Considering all factors, when FA content is between 10% and 30%, UH-MFPB slurry has ultra-high fluidity and high strength, which can play a good role in filling slurry transport.
-
表 1 改性鎂渣與粉煤灰的化學組成(質量分數)
Table 1. Chemical composition of modified magnesium slag and fly ash(mass fraction)
% Raw materials SiO2 CaO Al2O3 MgO Fe2O3 P2O5 SO3 MnO TiO2 MMS 19.21 41.18 0.82 3.78 2.59 0.03 0.02 0.06 0.06 FA 40.36 7.81 16.22 0.98 12.54 0.19 2.68 0.13 0.97 表 2 試驗方案
Table 2. Experimental procedure
Number Mass ratio of MMS:FA Mass fraction/% Curing time/d FA0 10∶0 74 3, 7, 28, 56 FA10 9∶1 FA20 8∶2 FA30 7∶3 FA40 6∶4 FA50 5∶5 表 3 基于H?B模型下的新鮮UH-MFPB料漿流變參數
Table 3. Rheological parameters of fresh UH-MFPB slurry based on the H–B model
MMS:FA H–B rheological equation Yield stress/Pa Plastic viscosity/(Pa·s) n Correlation coefficient, R2 Critical shear rate/s?1 △P/ (Pa? s?1) 10∶0 $ \tau {\text{ = }}53.71{\text{ + }}0.93{\gamma ^{0.94}} $ 53.71 0.93 0.94 0.9966 8447 9∶1 $ \tau {\text{ = }}49.65{\text{ + }}0.66{\gamma ^{0.94}} $ 49.65 0.66 0.95 0.9802 7721 8∶2 $ \tau {\text{ = }}27.56{\text{ + }}0.68{\gamma ^{1.08}} $ 27.56 0.68 1.08 0.9992 84 7370 7∶3 $ \tau {\text{ = }}26.19{\text{ + }}0.39{\gamma ^{1.21}} $ 26.19 0.39 1.21 0.9982 77 6907 6∶4 $ \tau {\text{ = }}24.14{\text{ + }}0.27{\gamma ^{1.26}} $ 24.14 0.27 1.26 0.9970 65 6172 5∶5 $ \tau {\text{ = }}19.22{\text{ + }}0.22{\gamma ^{1.27}} $ 19.22 0.22 1.27 0.9981 61 5144 表 4 新鮮UH-MFPB料漿的Cross黏度模型參數
Table 4. Cross viscosity model parameters of fresh UH-MFPB slurry
MMS:FA Cross viscosity model equation Initial shear viscosity/(Pa·s) Infinite shear viscosity/(Pa·s) Coefficient of
viscosity, KcFlow
index, ncCorrelation
coefficient, R2SE/% 10∶0 $\mu {\text{ = } }{\mu _\infty }{\text{ + } }\dfrac{ { {\mu _0}-}{\mu _\infty } } { {\left[ {1{\text{ + } }{ {\left( { {K_{\text{c} } }\gamma } \right)}^{ {n_c} } } } \right]} }$ 216.13 0.76 3.35 1.04 0.9976 4.77 9∶1 86.64 0.89 0.96 1.27 0.9955 7.79 8∶2 35.96 1.23 0.67 1.40 0.9901 11.66 7∶3 31.08 1.22 0.62 1.44 0.9919 10.99 6∶4 32.03 1.03 0.81 1.31 0.9962 7.41 5∶5 28.20 0.79 1.06 1.17 0.9951 8.12 www.77susu.com -
參考文獻
[1] Hu B N, Liu P L, Cui F, et al. Review and development status of backfill coal mining technology in China. Coal Sci Technol, 2020, 48(9): 39胡炳南, 劉鵬亮, 崔鋒, 等. 我國充填采煤技術回顧及發展現狀. 煤炭科學技術, 2020, 48(9):39 [2] Liu L, Fang Z Y, Zhang B, et al. Development history and basic categories of mine backfill technology. Met Mine, 2021(3): 1劉浪, 方治余, 張波, 等. 礦山充填技術的演進歷程與基本類別. 金屬礦山, 2021(3):1 [3] Wang M, Liu P, Shang S Y, et al. Numerical and experimental studies on the cooling performance of backfill containing phase change materials. Build Environ, 2022, 218: 109155 doi: 10.1016/j.buildenv.2022.109155 [4] Zhu M B, Cheng J Y, Zhang Z. Quality control of microseismic P-phase arrival picks in coal mine based on machine learning. Comput Geosci, 2021, 156: 104862 doi: 10.1016/j.cageo.2021.104862 [5] Zhu M B, Liu L, Wang S M, et al. Short- and long-walls backfilling pillarless coal mining method. J Min Safety Eng, https://doi.org/10.13545/j.cnki.jmse.2021.0580朱夢博, 劉浪, 王雙明, 等. 短−長壁工作面充填無煤柱開采方法研究. 采礦與安全工程學報, https://doi.org/10.13545/j.cnki.jmse.2021.0580 [6] Yang Z Q, Chen D X, Gao Q, et al. Key technologies in long-distance pipeline transportation of coarse aggregate coarse aggregate. J Guangxi Univ Nat Sci Ed, 2016, 41(4): 1306楊志強, 陳得信, 高謙, 等. 粗骨料充填料漿長距離管道輸送關鍵技術. 廣西大學學報(自然科學版), 2016, 41(4):1306 [7] Liu F T, Ding J F, Chen G P, et al. Study on the high-density gravity-flow backfilling technology of deep-well long-distance with large time line. Met Mine, 2014(2): 40劉豐韜, 丁劍鋒, 陳國平, 等. 深井長距離大倍線高濃度自流充填技術研究. 金屬礦山, 2014(2):40 [8] Yang T Y, Qiao D P, Wang J, et al. Numerical simulation and new model of pipeline transportation resistance of waste rock- aeolian sand high concentration slurry. Chin J Nonferrous Met, 2021, 31(1): 234楊天雨, 喬登攀, 王俊, 等. 廢石?風砂高濃度料漿管道輸送數值模擬及管輸阻力新模型. 中國有色金屬學報, 2021, 31(1):234 [9] Zhang L F, Wu A X, Wang H J. Effects and mechanism of pumping agent on rheological properties of highly muddy paste. Chin J Eng, 2018, 40(8): 918張連富, 吳愛祥, 王洪江. 泵送劑對高含泥膏體流變特性影響及機理. 工程科學學報, 2018, 40(8):918 [10] Sheng J, Wan W, Zheng B K, et al. Downward pumping filling of coarse aggregate technology under long distance and complex conditions. Min Res Dev, 2022, 42(3): 140盛佳, 萬文, 鄭伯坤, 等. 粗骨料長距離復雜工況下向泵送充填技術與應用. 礦業研究與開發, 2022, 42(3):140 [11] Luo T, Wang Q, Zhuang S Y. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Technol, 2019, 345: 54 doi: 10.1016/j.powtec.2018.12.094 [12] Chen J, Liang Y Z, Wang J, et al. Research on transport characteristic of high sand content filling material. Bull Chin Ceram Soc, 2020, 39(1): 194陳杰, 梁楊芝, 王俊, 等. 高沙充填材料的輸送性能研究. 硅酸鹽通報, 2020, 39(1):194 [13] Lü C, Liu J P, Tian Y, et al. Influence of hydrophobic minerals on fluidity and strength of high-strength self-compacting concrete. J Southeast Univ Nat Sci Ed, 2022, 52(2): 263呂晨, 劉加平, 田義, 等. 疏水礦物對高強自密實混凝土流動性能及強度的影響. 東南大學學報(自然科學版), 2022, 52(2):263 [14] Xue Z L, Zhang Y Z, Gan D Q, et al. Effect of pumping agent on fluidity of filling slurry and mechanical properties of filling body. Met Mine, 2020(11): 25薛振林, 張友志, 甘德清, 等. 泵送劑摻量對充填料漿流動性能及充填體力學性能的影響. 金屬礦山, 2020(11):25 [15] Liu L, Ruan S S, Qi C C, et al. Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill. J Clean Prod, 2021, 279: 123684 doi: 10.1016/j.jclepro.2020.123684 [16] Liu L, Ruan S S, Fang Z Y, et al. Modification of magnesium slag and its application in the field of mine filling. J China Coal Soc, 2021, 46(12): 3833劉浪, 阮仕山, 方治余, 等. 鎂渣的改性及其在礦山充填領域的應用探索. 煤炭學報, 2021, 46(12):3833 [17] Dai X D, Aydin S, Yardimci M Y, et al. Rheology, early-age hydration and microstructure of alkali-activated GGBFS-Fly ash-limestone mixtures. Cem Concr Compos, 2021, 124: 104244 doi: 10.1016/j.cemconcomp.2021.104244 [18] Xie Y J, Chen X B, Ma K L, et al. Effects of limestone powder on rheological properties of cement-flyash mortar. J Railw Sci Eng, 2015, 12(1): 59謝友均, 陳小波, 馬昆林, 等. 石灰石粉對水泥-粉煤灰砂漿流變行為影響的研究. 鐵道科學與工程學報, 2015, 12(1):59 [19] Li J, Zhang S Q, Wang Q, et al. Feasibility of using fly ash-slag-based binder for mine backfilling and its associated leaching risks. J Hazard Mater, 2020, 400: 123191 doi: 10.1016/j.jhazmat.2020.123191 [20] Liu L, Fang Z Y, Wang M, et al. Experimental and numerical study on rheological properties of ice-containing cement paste backfill slurry. Powder Technol, 2020, 370: 206 doi: 10.1016/j.powtec.2020.05.024 [21] Zhang X, Zhang L. Application of rheological theory in cement-based materials. Fly Ash Compr Util, 2013, 26(4): 9張雄, 張蕾. 流變學理論在水泥基材料中的應用. 粉煤灰綜合利用, 2013, 26(4):9 [22] Mahboub K E, Mbonimpa M, Belem T, et al. Rheological characterization of cemented paste backfills containing superabsorbent polymers (SAPs). Constr Build Mater, 2022, 317: 125863 doi: 10.1016/j.conbuildmat.2021.125863 [23] Chen K Y, Wu D Z, Hu J T. Advances in the reaction mechanism and preparation parameters of geopolymer binder material based on components. Bull Chin Ceram Soc, 2020, 39(7): 2033陳柯宇, 吳大志, 胡俊濤. 基于組分的地聚合物膠凝材料反應機理及其制備參數的研究進展. 硅酸鹽通報, 2020, 39(7):2033 [24] Ouattara D, Mbonimpa M, Yahia A, et al. Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers. Constr Build Mater, 2018, 190: 294 doi: 10.1016/j.conbuildmat.2018.09.066 [25] Nehdi M, Rahman M A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction. Cem Concr Res, 2004, 34(11): 1993 doi: 10.1016/j.cemconres.2004.02.020 [26] Chen Y J, Han F L, Luo Z. Solidification/stabilization of heavy mental Cu and Cd in waste acid residue by magnesium slag. Inorg Chem Ind, 2015, 47(7): 48(陳玉潔, 韓鳳蘭, 羅釗. 鎂渣固化/穩定污酸渣中重金屬銅和鎘. 無機鹽工業, 2015, 47(7):48 [27] Cui Z Z, Yang W W, Zhang D P. Experimental study on pozzolanic activity of magnesium slag. Ningxia Eng Technol, 2007, 6(2): 160崔自治, 楊維武, 張冬平. 鎂渣火山灰活性試驗研究. 寧夏工程技術, 2007, 6(2):160 [28] Guo Z G, Jiang T, Zhang J, et al. Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume. Constr Build Mater, 2020, 231: 117115 doi: 10.1016/j.conbuildmat.2019.117115 [29] Li X, Yan P Y. Influence of fly ash content on alkalinity of pore solution and microstructure of cement pastes. J Build Mater, 2010, 13(6): 787李響, 閻培渝. 粉煤灰摻量對水泥孔溶液堿度與微觀結構的影響. 建筑材料學報, 2010, 13(6):787 [30] Zhao J H, Liu L. Research into rheological properties of backfill paste based on the slump test. J Xi’an Univ Archit &Technol Nat Sci Ed, 2015, 47(2): 192趙建會, 劉浪. 基于坍落度的充填膏體流變特性研究. 西安建筑科技大學學報(自然科學版), 2015, 47(2):192 [31] Shen H M, Wu A X, Jiang L C, et al. Small cylindrical slump test for unclassified tailings paste. J Central South Univ Sci Technol, 2016, 47(1): 204沈慧明, 吳愛祥, 姜立春, 等. 全尾砂膏體小型圓柱塌落度檢測. 中南大學學報(自然科學版), 2016, 47(1):204 [32] Panchal S, Deb D, Sreenivas T. Variability in rheology of cemented paste backfill with hydration age, binder and superplasticizer dosages. Adv Powder Technol, 2018, 29(9): 2211 doi: 10.1016/j.apt.2018.06.005 [33] Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Central South Univ Sci Technol, 2018, 49(10): 2519王少勇, 吳愛祥, 阮竹恩, 等. 基于環管實驗的膏體流變特性及影響因素. 中南大學學報(自然科學版), 2018, 49(10):2519 [34] Xiao J, Wang D F, Zuo S H, et al. Shear protocols of cement paste based on steady rheological test. Bull Chin Ceram Soc, 2017, 36(7): 2387肖佳, 王大富, 左勝浩, 等. 基于穩態流變測試的水泥漿體剪切模式研究. 硅酸鹽通報, 2017, 36(7):2387 [35] Wu A X, Ruan Z E, Wang J D. Rheological behavior of paste in metal mines. Int J Miner Metall Mater, 2022, 29(4): 717 doi: 10.1007/s12613-022-2423-6 [36] Jiang D B, Li X G, Lv Y, et al. Utilization of limestone powder and fly ash in blended cement: rheology, strength and hydration characteristics. Constr Build Mater, 2020, 232: 117228 doi: 10.1016/j.conbuildmat.2019.117228 [37] Xie Y J, Chen X B, Ma K L, et al. Effects of limestone powder on shear thinning and shear thickening of cement-fly ash paste. J Build Mater, 2015, 18(5): 824謝友均, 陳小波, 馬昆林, 等. 石灰石粉對水泥-粉煤灰漿體剪切變稀和剪切增稠的影響. 建筑材料學報, 2015, 18(5):824 [38] Grzeszczyk S, Lipowski G. Effect of content and particle size distribution of high-calcium fly ash on the rheological properties of cement pastes. Cem Concr Res, 1997, 27(6): 907 doi: 10.1016/S0008-8846(97)00073-2 [39] Ma K L, Long G C, Xie Y J, et al. Factors on affecting plastic viscosity of cement–fly ash–limestone compound pastes. J Chin Ceram Soc, 2013, 41(11): 1481馬昆林, 龍廣成, 謝友均, 等. 水泥–粉煤灰–石灰石粉漿體塑性黏度的影響因素. 硅酸鹽學報, 2013, 41(11):1481 [40] Hoffman R L. Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol, 1998, 42(1): 111 doi: 10.1122/1.550884 [41] Egres R G, Nettesheim F, Wagner N J. Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J Rheol, 2006, 50(5): 685 doi: 10.1122/1.2213245 [42] Hoffman R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. observation of a flow instability. Trans Soc Rheol, 1972, 16(1): 155 [43] Brady J F, Bossis G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J Fluid Mech, 1985, 155: 105 doi: 10.1017/S0022112085001732 [44] Xie Y J, Chen X B, Ma K L, et al. Effects of fly ash on shearing thinning and thickening of cement paste. J Chin Ceram Soc, 2015, 43(8): 1040謝友均, 陳小波, 馬昆林, 等. 粉煤灰對水泥漿體的剪切變稀和剪切增稠作用. 硅酸鹽學報, 2015, 43(8):1040 [45] Ma K L, Feng J, Long G C, et al. Rheological characteristic and its mechanism of cement-fly ash paste. J Railw Sci Eng, 2017, 14(3): 465馬昆林, 馮金, 龍廣成, 等. 水泥?粉煤灰漿體流變特性及其機理研究. 鐵道科學與工程學報, 2017, 14(3):465 [46] Wang Q, Cui X Y, Wang J, et al. Effect of fly ash on rheological properties of graphene oxide cement paste. Constr Build Mater, 2017, 138: 35 doi: 10.1016/j.conbuildmat.2017.01.126 [47] Liu Y, Li M Y, Yan P Y. Effect of mineral admixtures on rheological properties and thixotropy of binder paste. J Chin Ceram Soc, 2019, 47(5): 594劉宇, 黎夢圓, 閻培渝. 礦物摻合料對膠凝材料漿體流變性能和觸變性的影響. 硅酸鹽學報, 2019, 47(5):594 [48] Jiang H Q, Fall M, Yilmaz E, et al. Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy. Powder Technol, 2020, 372: 258 doi: 10.1016/j.powtec.2020.06.009 [49] Liu L. Research on Proportion Optimization and Flow Characteristic of Backfill Paste in Mine Sites [Dissertation]. Changsha: Central South University, 2013劉浪. 礦山充填膏體配比優化與流動特性研究[學位論文]. 長沙: 中南大學, 2013 [50] Tang X S, Cai Y B, Wen J B, et al. Correlation between slump flow and rheological parameters of compound pastes with high volume of ground slag. J Chin Ceram Soc, 2014, 42(5): 648唐修生, 蔡躍波, 溫金保, 等. 磨細礦渣復合漿體流變參數與流動度的相關性. 硅酸鹽學報, 2014, 42(5):648 [51] Celik F, Canakci H. An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA). Constr Build Mater, 2015, 91: 187 doi: 10.1016/j.conbuildmat.2015.05.025 [52] Lachemi M, Hossain K M A, Lambros V, et al. Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste. Cem Concr Res, 2004, 34(2): 185 doi: 10.1016/S0008-8846(03)00233-3 [53] Li H Y. Study on Time-dependent Changes in Flow Properties of Cemented Coal Gangue Backfill Materials [Dissertation]. Taiyuan: Taiyuan University of Technology, 2019李化運. 煤矸石膠結充填材料流動性能經時變化研究[學位論文]. 太原: 太原理工大學, 2019 [54] Nan X L, Ji J R, Wei D B, et al. Influence of limestone powder on rheological properties of ultrahigh strength cement-based materials. J Chongqing Jiaotong Univ Nat Sci, 2022, 41(5): 100南雪麗, 姬建瑞, 魏定邦, 等. 石灰石粉對超高強水泥基材料流變特性的影響. 重慶交通大學學報(自然科學版), 2022, 41(5):100 -