<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于Kmeans–BP神經網絡的KR工序終點鐵水硫含量預測模型

馮凱 賀東風 徐安軍 趙宏博 林時敬

馮凱, 賀東風, 徐安軍, 趙宏博, 林時敬. 基于Kmeans–BP神經網絡的KR工序終點鐵水硫含量預測模型[J]. 工程科學學報, 2023, 45(7): 1187-1193. doi: 10.13374/j.issn2095-9389.2022.05.29.004
引用本文: 馮凱, 賀東風, 徐安軍, 趙宏博, 林時敬. 基于Kmeans–BP神經網絡的KR工序終點鐵水硫含量預測模型[J]. 工程科學學報, 2023, 45(7): 1187-1193. doi: 10.13374/j.issn2095-9389.2022.05.29.004
FENG Kai, HE Dong-feng, XU An-jun, ZHAO Hong-bo, LIN Shi-jing. End sulfur content prediction method of molten iron in KR based on Kmeans–BP neural network[J]. Chinese Journal of Engineering, 2023, 45(7): 1187-1193. doi: 10.13374/j.issn2095-9389.2022.05.29.004
Citation: FENG Kai, HE Dong-feng, XU An-jun, ZHAO Hong-bo, LIN Shi-jing. End sulfur content prediction method of molten iron in KR based on Kmeans–BP neural network[J]. Chinese Journal of Engineering, 2023, 45(7): 1187-1193. doi: 10.13374/j.issn2095-9389.2022.05.29.004

基于Kmeans–BP神經網絡的KR工序終點鐵水硫含量預測模型

doi: 10.13374/j.issn2095-9389.2022.05.29.004
基金項目: 國家自然科學基金資助面上項目(51574032)
詳細信息
    通訊作者:

    E-mail: hdfcn@163.com

  • 中圖分類號: TF769

End sulfur content prediction method of molten iron in KR based on Kmeans–BP neural network

More Information
  • 摘要: 針對KR工序終點鐵水硫含量預測問題,提出一種基于Kmeans聚類分析和BP神經網絡(BPNN)相結合的建模方法。首先,通過Kmeans聚類對KR工序生產數據進行模式識別和分類,構建不同工況特征的數據集;然后,基于BP神經網絡,針對不同數據集訓練預測模型;最后,將不同數據集的預測模型進行集成,形成最終的終點鐵水硫含量預測模型,實現對不同鐵水條件和工況條件的預測。利用某鋼鐵企業實際生產數據,分別用基于脫硫反應動力學、BP神經網絡和Kmeans–BPNN方法建立的預測模型,對KR工序終點鐵水硫含量進行預測。結果表明,Kmeans–BPNN的KR工序終點硫含量預測模型的精度顯著高于脫硫反應動力學和BP神經網絡的預測模型。

     

  • 圖  1  BP神經網絡構建KR工序終點硫含量預測模型示意圖

    Figure  1.  Diagram of the BP neural network for prediction model of sulfur content in KR

    圖  2  聚類中心個數與聚類結果誤差的關系曲線.(a)聚類結果誤差均值;(b)聚類結果誤差均值差值

    Figure  2.  Relationship curve between the number of clustering centers and error of clustering results: (a) mean error of clustering results; (b) difference of mean error of clustering results

    圖  3  基于Kmeans–BPNN的終點硫含量預測模型路線圖

    Figure  3.  Diagram of the sulfur content prediction model based on Kmeans–BPNN

    圖  4  不同模型KR工序終點硫含量預測精度. (a)脫硫反應動力學模型; (b) BP神經網絡模型; (c) Kmeans–BPNN模型

    Figure  4.  Prediction hit rates of the end sulfur content in KR based on different models: (a) desulfurization reaction kinetics; (b) BP neural network; (c) Kmeans–BPNN

    表  1  脫硫反應達到平衡時鐵水溫度與終點硫含量的關系

    Table  1.   Relationship between molten iron temperature and end sulfur content when desulfurization reaction reaches equilibrium

    Temperature / KEnd sulfur content / 10–7
    16732.22
    16231.18
    15730.60
    下載: 導出CSV

    表  2  KR脫硫終點硫含量的影響因素的數據分布

    Table  2.   Data distribution of the influencing factors of the end sulfur content in KR desulfurization

    Influencing factorsData rangeAverageStandard deviation
    Incoming molten iron [S] content /10–510–10636.2412.38
    Incoming molten iron temperature /℃1261–14701381.8932.33
    Molten iron weight / t200–223.8213.016.24
    Desulfurizer consumption /kg659–29781423.36309.24
    Mixing time /min5–2614.781.93
    Notes: The [S] content in molten iron is measured as a mass percentage.
    下載: 導出CSV

    表  3  KR脫硫反應動力學、BP神經網絡和Kmeans–BPNN方法預測命中率匯總 %

    Table  3.   Summary of prediction hit rates based on desulfurization reaction kinetics, BPNN, and Kmeans–BPNN

    Error range /10–5Desulfurization
    reaction kinetics
    BPNNKmeans–BPNN
    [–1,1]23.8325.1430.23
    [–2,2]44.0851.2455.51
    [–3,3]62.3373.6977.82
    [–4,4]76.8691.6095.18
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Feng K, Xu A J, He D F, et al. Case-based reasoning method based on mechanistic model correction for predicting endpoint sulphur content of molten iron in KR desulphurization. Ironmaking Steelmaking, 2020, 47(7): 799 doi: 10.1080/03019233.2019.1615307
    [2] Chen W, Wang B X, Chen Y. Prediction for the sulfur content in pig iron of blast furnace by combining artificial neural network with genetic algorithm. Adv Mater Res, 2010, 143-144: 1137 doi: 10.4028/www.scientific.net/AMR.143-144.1137
    [3] Zhang J H, Xie A G, Shen F M. Optimization and analysis of sulfur content in hot metal based on neural network. J Mater Metall, 2006, 5(2): 86 doi: 10.3969/j.issn.1671-6620.2006.02.002

    張軍紅, 謝安國, 沈峰滿. 基于神經網絡對鐵水硫含量的優化和分析. 材料與冶金學報, 2006, 5(2):86 doi: 10.3969/j.issn.1671-6620.2006.02.002
    [4] Zhang H S, Zhan D P, Jiang Z H. Final sulfur content prediction model based on improved BP artificial neural network for hot metal pretreatment. Iron Steel, 2007, 42(3): 30 doi: 10.3321/j.issn:0449-749X.2007.03.008

    張慧書, 戰東平, 姜周華. 基于改進BP神經網絡的鐵水預處理終點硫含量預報模型. 鋼鐵, 2007, 42(3):30 doi: 10.3321/j.issn:0449-749X.2007.03.008
    [5] Zhou H, Tang Z Y, Wen B J, et al. Application of statistical analysis, Deng's relevancy, and BP neural network for predicting molten iron sulfur in COREX process. Int J Chem React Eng, 2020, 18(12): 20220122
    [6] Wang W, Chen W L, Ye Y, et al. Application of neural network to predict sulphur content in hot metal. Iron Steel, 2006, 41(10): 19 doi: 10.3321/j.issn:0449-749X.2006.10.004

    王煒, 陳畏林, 葉勇, 等. 神經網絡在高爐鐵水硫含量預報中的應用. 鋼鐵, 2006, 41(10):19 doi: 10.3321/j.issn:0449-749X.2006.10.004
    [7] Fang Z Q, Sun Y H. Desulphurization analysis of slag with high basicity and prediction model for sulfur distribution ratio. Steelmaking, 2014, 30(1): 46 doi: 10.3969/j.issn.1002-1043.2014.01.012

    方忠強, 孫彥輝. 高堿度精煉渣脫硫分析及硫分配比預測模型. 煉鋼, 2014, 30(1):46 doi: 10.3969/j.issn.1002-1043.2014.01.012
    [8] Qiu D, Dai W J, Zhang N. Research on prediction model of end sulfur content for converter smelting. Adv Mater Res, 2014, 1037: 26 doi: 10.4028/www.scientific.net/AMR.1037.26
    [9] Al-Jamimi H A. Prediction of sulfur content in desulfurization process using a fuzzy-logic based model. Solid State Phenom, 2019, 287: 80 doi: 10.4028/www.scientific.net/SSP.287.80
    [10] Zhang G, Liu H C, Li P L, et al. Load prediction based on hybrid model of VMD–mRMR–BPNN–LSSVM. Complexity, 2020, 2020: 6940786
    [11] Liu Y F, Wang Q, Zhang X D, et al. Using ANFIS and BPNN methods to predict the unfrozen water content of saline soil in Western Jilin, China. Symmetry, 2018, 11(1): 16 doi: 10.3390/sym11010016
    [12] Ahmed W, Muhammad K, Siddiqui F I. Predicting calorific value of thar lignite deposit: A comparison between back-propagation neural networks (BPNN), gradient boosting trees (GBT), and multiple linear regression (MLR). Appl Artif Intell, 2020, 34(14): 1124 doi: 10.1080/08839514.2020.1824091
    [13] Liu Y, Li B F. Bayesian hierarchical K-means clustering. Intell Data Anal, 2020, 24(5): 977 doi: 10.3233/IDA-194807
    [14] Geng X Y, Mu Y K, Mao S L, et al. An improved K-means algorithm based on fuzzy metrics. IEEE Access, 8: 217416
    [15] T?rn?uc? C, Gómez-Pérez D, Balcázar J L, et al. Global optimality in k-means clustering. Inf Sci, 2018, 439-440: 79 doi: 10.1016/j.ins.2018.02.001
    [16] Ming Y W, Zhu E, Wang M, et al. Scalable k-means for large-scale clustering. Intell Data Anal, 2019, 23(4): 825 doi: 10.3233/IDA-173795
    [17] Moodi F, Saadatfar H. An improved K-means algorithm for big data. IET Softw, 2022, 16(1): 48 doi: 10.1049/sfw2.12032
    [18] Hu H, Zhang J F, Li T. A novel hybrid decompose-ensemble strategy with a VMD–BPNN approach for daily streamflow estimating. Water Resour Manag, 2021, 35: 15
    [19] Jiang X P, Wang Z T, Zhu H, et al. Hydraulic turbine system identification and predictive control based on GASA–BPNN. Int J Miner Metall Mater, 2021, 28(7): 1240 doi: 10.1007/s12613-021-2290-6
    [20] Lu Y, Xing Y, Li X, et al. A new approach of CMT seam welding deformation forecasting based on GA–BPNN. Frattura ed Integrità Strutturale, 2020, 14(53): 325
    [21] Cai B, Pan G L, Fu F. Prediction of the postfire flexural capacity of RC beam using GA–BPNN machine learning. J Perform Constr Fac, 2020, 34(6): 04020105 doi: 10.1061/(ASCE)CF.1943-5509.0001514
    [22] Sun Y B, Xiao J, Liu H, et al. Deformation prediction based on an adaptive GA–BPNN and the online compensation of a 5-DOF hybrid robot. Ind Robot, 2020, 47(6): 915 doi: 10.1108/IR-01-2020-0016
    [23] Wang D H, Sun J Y, Dong A P, et al. Prediction of core deflection in wax injection for investment casting by using SVM and BPNN. Int J Adv Manuf Tech, 2019, 101(5-8): 2165 doi: 10.1007/s00170-018-3069-4
    [24] Yang Z, Zhou Q, Wu X, et al. Detection of water content in transformer oil using multi frequency ultrasonic with PCA–GA–BPNN. Energies, 2019, 12(7): 1379 doi: 10.3390/en12071379
    [25] Yang X, Zhou Q, Wang J, et al. Predictive control modeling of ADS's MEBT using BPNN to reduce the impact of noise on the control system. Ann Nucl Energy, 2019, 132(10): 576
    [26] Cai B, Sun X, Wang J, et al. Fault detection and diagnostic method of diesel engine by combining rule-based algorithm and BNs/BPNNs. J Manuf Syst, 2020, 57(7): 148
  • 加載中
圖(4) / 表(3)
計量
  • 文章訪問數:  371
  • HTML全文瀏覽量:  180
  • PDF下載量:  60
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-05-29
  • 網絡出版日期:  2022-10-31
  • 刊出日期:  2023-07-25

目錄

    /

    返回文章
    返回