-
摘要: 以V?(4?5)Cr?(4?5)Ti合金為代表的釩合金具有高溫性能優異、抗輻照腫脹性能好、中子輻照活化性低等諸多優點,被視為先進核聚變反應堆最有潛力的候選包層結構材料之一。然而,釩合金在較高溫度下的氧化腐蝕及吸氧脆化問題仍是目前制約其實際應用和長壽命服役的重要因素。因此,提升釩合金的抗高溫氧化腐蝕性能,對于提高其服役溫度、延長其服役壽命以及拓寬其應用領域均具有重要意義。本文綜述了國內外有關提升釩合金抗高溫氧化腐蝕性能的三種主要方案,即添加抗氧化性元素、應用擴散型涂層和包覆型涂層,并對這些方案的主要特點、應用實例以及存在的問題進行了分析和討論。上述三種方案中,包覆型涂層由于可以將釩合金基體和服役環境完全隔離,因而具備更大的應用潛力。根據釩合金的應用特點,對先進包覆型抗氧化腐蝕涂層的發展趨勢和技術需求進行了展望,以期為釩合金抗高溫氧化腐蝕研究工作的深入開展提供借鑒。Abstract: Vanadium alloys are an attractive candidate material for advanced fusion reactors’ structural components. Some leading vanadium alloys, such as V?(4?5)Cr?(4?5)Ti alloy, exhibit several important advantages, including excellent strength at elevated temperatures, high resistance to neutron irradiation damage, inherently low long-term activation, as well as good fabricability and weldability. However, the corrosion and embrittlement via oxygen pickup during the high-temperature oxidation process of vanadium alloys remains a key issue, restricting their operation conditions and long service life. In a high-pressure oxygen environment, the main oxidation product V2O5, with a low melting point of ~680 ℃, is formed on the vanadium alloy surface, which cannot offer reliable protection to mitigate further oxidation over 650 ℃. However, despite being exposed to a very low-pressure oxygen environment, it is still unlikely for vanadium alloys to form an effective oxidation film to retard the oxygen absorption at temperatures over 450 ℃, mainly due to the high solubility of oxygen in vanadium. When the oxygen concentration reaches 0.2% in the matrix of V?4Cr?4Ti alloy, it can cause severe oxygen embrittlement, possibly due to oxygen accumulation and formation of fine oxidation precipitates at the grain boundaries and the adjacent matrix. Therefore, it is significantly important to enhance the high-temperature oxidation-resistant performance of the vanadium alloy to broaden the operation conditions. In this work, this research progress on the high-temperature oxidation resistance of vanadium alloys is systematically reviewed. In summary, three main methods for enhancing the oxidation–corrosion resistance of vanadium alloys at elevated temperatures are elaborated, i.e., oxidation-resistant element addition, diffusion coating, and overlay coating. Additionally, the characteristics and existing problems of these methods and the responding examples are also analyzed and discussed in detail. In the first two methods, it is impossible to completely isolate the alloy substrate from the service environment; thus, the typical oxidation product V2O5 is easily formed in the high-pressure oxygen environment, leading to severe oxidation corrosion and embrittlement, especially at elevated temperatures. Expectedly, the dense overlay coating presents a greater potential application mainly because of the thorough protection from the service environment. Finally, the development trend in the modification and technical requirements of the advanced overlay coatings on high-performance oxidation resistance are prospected in this paper as per the practical application demands for vanadium alloys, aiming to provide a beneficial reference for further research.
-
圖 7 不同涂層的V–4Cr–4Ti合金樣品在650 ℃空氣中氧化1 h的質量增加情況及氧化后的截面SEM形貌[69,72]. (a, a′)無涂層; (b, b′)VSi2涂層; (c, c′) V1-xCrxSi2涂層; (d, d′) V1-xTixSi2涂層
Figure 7. Mass gain and cross-sectional microstructure of V–4Cr–4Ti alloys without and with different coatings for isothermal exposure at 650 °C for 50 h in air[69,72]: (a, a′) bare sample; (b, b′) VSi2 coating; (c, c′) V1-xCrxSi2 coating; (d, d′) V1-xTixSi2 coating
圖 10 不同熱處理工藝下V?5Cr?5Ti合金表面滲Al涂層的截面SEM形貌和元素分布[76]. (a, a') 750 ℃, 1 h; (b, b') 850 ℃, 1 h; (c, c') 950 ℃, 1 h; (d, d') 1050 ℃, 1 h
Figure 10. Cross-sectional SEM micrographs and corresponding element depth profiles of the aluminized coatings on V?5Cr?5Ti alloy obtained under different heat treatment regimes[76]: (a, a') 750 ℃ for 1 h; (b, b') 850 ℃ for 1 h; (c, c') 950 ℃ for 1 h; (d, d') 1050 ℃ for 1 h
表 1 釩合金在不同聚變包層系統中的服役環境
Table 1. Oxidation issues of vanadium alloys for fusion applications
Exposure environment Applicable component in a fusion system Typical service condition Lithium Li-cooled blanket structure 400?750 ℃[37] Vacuum Plasma facing component ~1×10?6 Pa[38] Helium He-cooled blanket structure 350?650 ℃, 18 MPa[36] Water Component with water cooling High-temperature pressurized water, 200?300 ℃[39] Air Vacuum component safety under leakage Operation temperature, ~600 ℃[40] www.77susu.com -
參考文獻
[1] Fasel D, Tran M Q. Availability of lithium in the context of future D-T fusion reactors. Fusion Eng Des, 2005, 75-79: 1163 doi: 10.1016/j.fusengdes.2005.06.345 [2] Ongena J, Oost G V. Energy for future centuries: Prospects for fusion power as a future energy source. Fusion Sci Technol, 2012, 61(2T): 3 doi: 10.13182/FST12-A13488 [3] Bradshaw A M, Hamacher T, Fischer U. Is nuclear fusion a sustainable energy form? Fusion Eng Des, 2011, 86(9-11): 2770 [4] Zhao J Y. The international thermonuclear experimental reactor program. Physics, 2004, 33(4): 257 doi: 10.3321/j.issn:0379-4148.2004.04.006趙君煜. 國際熱核聚變實驗堆(ITER)計劃. 物理, 2004, 33(4):257 doi: 10.3321/j.issn:0379-4148.2004.04.006 [5] Aymar R, Barabaschi P, Shimomura Y. The ITER design. Plasma Phys Control Fusion, 2002, 44(5): 519 doi: 10.1088/0741-3335/44/5/304 [6] Li J G. The status and progress of tokamak research. Physics, 2016, 45(2): 88 doi: 10.7693/wl20160203李建剛. 托卡馬克研究的現狀及發展. 物理, 2016, 45(2):88 doi: 10.7693/wl20160203 [7] Bloom E E, Zinkle S J, Wiffen F W. Materials to deliver the promise of fusion power — progress and challenges. J Nucl Mater, 2004, 329-333: 12 doi: 10.1016/j.jnucmat.2004.04.141 [8] Yvon P, Carré F. Structural materials challenges for advanced reactor systems. J Nucl Mater, 2009, 385(2): 217 doi: 10.1016/j.jnucmat.2008.11.026 [9] Zinkle S J, Busby J T. Structural materials for fission & fusion energy. Mater Today, 2009, 12(11): 12 doi: 10.1016/S1369-7021(09)70294-9 [10] Zinkle S J. Challenges in developing materials for fusion technology - past, present and future. Fusion Sci Technol, 2013, 64(2): 65 doi: 10.13182/FST13-631 [11] Smith D L, Billone M C, Natesan K. Vanadium-base alloys for fusion first-wall/blanket applications. Int J Refract Met Hard Mater, 2000, 18(4-5): 213 doi: 10.1016/S0263-4368(00)00037-8 [12] Muroga T, Chen J M, Chernov V M, et al. Present status of vanadium alloys for fusion applications. J Nucl Mater, 2014, 455(1-3): 263 doi: 10.1016/j.jnucmat.2014.06.025 [13] Duquesnes V, Guilbert T, Le Flem M. French investigation of a new V?4Cr?4Ti grade: CEA-J57 — Fabrication and microstructure. J Nucl Mater, 2012, 426(1-3): 96 doi: 10.1016/j.jnucmat.2012.03.029 [14] Wriedt H A. The O?V (oxygen?vanadium) system. Bull Alloy Phase Diagr, 1989, 10(3): 271 doi: 10.1007/BF02877512 [15] Natesan K, Soppet W K, Uz M. Effects of oxygen and oxidation on tensile behavior of V?4Cr?4Ti alloy. J Nucl Mater, 1998, 258-263: 1476 doi: 10.1016/S0022-3115(98)00399-7 [16] Stringer J. The vanadium-oxygen system—a review. J Less Common Met, 1965, 8(1): 1 doi: 10.1016/0022-5088(65)90052-4 [17] Anderson J S, Khan A S. Phase equilibria in the vanadium-oxygen system. J Less Common Met, 1970, 22(2): 209 doi: 10.1016/0022-5088(70)90021-4 [18] Mukherjee A, Wach S P. Kinetics of the oxidation of vanadium in the temperature range 350?950 ℃. J Less Common Met, 1983, 92(2): 289 doi: 10.1016/0022-5088(83)90495-2 [19] Potapenko M M, Drobishev V A, Filkin V Y, et al. Manufacture of semifinished items of alloys V–4Ti–4Cr and V–10Ti–5Cr for use as a structural material in fusion applications. J Nucl Mater, 1996, 233-237: 438 doi: 10.1016/S0022-3115(96)00285-1 [20] Rowcliffe A F, Hoelzer D T, Kurtz R J, et al. Oxidation behavior of a V?4Cr?4Ti alloy during the commercial processing of thin-wall tubing. J Nucl Mater, 2007, 367-370: 839 doi: 10.1016/j.jnucmat.2007.03.073 [21] Wilson J R, Lewis M E. Oxidation of vanadium in dry and moist oxygen–argon mixtures. Nature, 1965, 206(4991): 1350 [22] Price W R, Stringer J. The oxidation of vanadium at high temperatures. J Less Common Met, 1965, 8(3): 165 doi: 10.1016/0022-5088(65)90044-5 [23] Price W R, Kennett S J, Stringer J. The oxidation of vanadium in the temperature range 700°?1000 ℃: The non-linear rate law. J Less Common Met, 1967, 12(4): 318 doi: 10.1016/0022-5088(67)90129-4 [24] Fujiwara M, Natesan K, Satou M, et al. Effects of doping elements on oxidation properties of V?Cr?Ti type alloys in several environments. J Nucl Mater, 2002, 307-311: 601 doi: 10.1016/S0022-3115(02)01101-7 [25] Busch G, Tobin A. Oxidation of vanadium and vanadium alloys in gaseous helium coolants containing water vapor impurities. J Nucl Mater, 1986, 141-143: 599 doi: 10.1016/0022-3115(86)90060-7 [26] Loomis B A, Wiggins G. Corrosion and oxidation of vanadium-base alloys. J Nucl Mater, 1984, 122(1-3): 693 doi: 10.1016/0022-3115(84)90683-4 [27] Keller J G, Douglass D L. The high-temperature oxidation behavior of vanadium-aluminum alloys. Oxid Met, 1991, 36(5): 439 [28] Huang W G, Tu M J, Chen J M. Oxidizing characteristics and oxide formation of V?4Cr?4Ti alloy. Rare Met Mater Eng, 2006, 35(5): 695 doi: 10.3321/j.issn:1002-185X.2006.05.006黃維剛, 涂銘旌, 諶繼明. V–4Cr–4Ti合金的氧化特性及氧化物的形成. 稀有金屬材料與工程, 2006, 35(5):695 doi: 10.3321/j.issn:1002-185X.2006.05.006 [29] Pint B A, DiStefano J R. Oxygen embrittlement of vanadium alloys with and without surface oxide formation. J Nucl Mater, 2002, 307-311: 560 doi: 10.1016/S0022-3115(02)01222-9 [30] Uz M, Natesan K, Hang V B. Oxidation kinetics and microstructure of V-(4-5) wt% Cr-(4-5) wt% Ti alloys exposed to air at 300-650 ℃. J Nucl Mater, 1997, 245(2-3): 191 doi: 10.1016/S0022-3115(97)00008-1 [31] DiStefano J R, Pint B A, Devan J H, et al. Effects of oxygen and hydrogen at low pressure on the mechanical properties of V?Cr?Ti alloys. J Nucl Mater, 2000, 283-287: 841 doi: 10.1016/S0022-3115(00)00231-2 [32] Chen J M, Yang L, Qiu S Y, et al. Characteristics of the high temperature oxidation and hydrogen embrittlement for vanadium alloys. Rare Met Mater Eng, 2003, 32(2): 113 doi: 10.3321/j.issn:1002-185X.2003.02.008諶繼明, 楊霖, 邱紹宇, 等. 釩合金的高溫氧化特性和氫致脆性研究. 稀有金屬材料與工程, 2003, 32(2):113 doi: 10.3321/j.issn:1002-185X.2003.02.008 [33] Hayakawa R, Hatano Y, Fujii K, et al. Surface segregation and oxidation of Ti in a V–Ti alloy. J Nucl Mater, 2002, 307-311: 580 doi: 10.1016/S0022-3115(02)01100-5 [34] Pint B A, DiStefano J R. The role of oxygen uptake and scale formation on the embrittlement of vanadium alloys. Oxid Met, 2005, 63(1): 33 [35] R?hrig H D, DiStefano J R, Chitwood L D. Effect of hydrogen and oxygen on the tensile properties of V?4Cr?4Ti. J Nucl Mater, 1998, 258-263: 1356 doi: 10.1016/S0022-3115(98)00201-3 [36] Wong C P C, Malang S, Nishio S, et al. Advanced high performance solid wall blanket concepts. Fusion Eng Des, 2002, 61-62: 283 doi: 10.1016/S0920-3796(02)00295-8 [37] Gohar Y, Majumdar S, Smith D. High power density self-cooled lithium-vanadium blanket. Fusion Eng Des, 2000, 49-50: 551 doi: 10.1016/S0920-3796(00)00279-9 [38] Pearce R J H, Antipenkov A, Bersier J L, et al. Gas species, their evolution and segregation through the ITER vacuum systems. Vacuum, 2012, 86(11): 1725 doi: 10.1016/j.vacuum.2012.03.048 [39] Diercks D R, Smith D L. Corrosion behavior of vanadium-base alloys in pressurized water at 288 ℃. J Nucl Mater, 1986, 141-143: 617 doi: 10.1016/0022-3115(86)90064-4 [40] Sagara A, Motojima O, Watanabe K, et al. Blanket and divertor design for force free helical reactor (FFHR). Fusion Eng Des, 1995, 29: 51 doi: 10.1016/0920-3796(95)80005-I [41] Airiskallio E, Nurmi E, Heinonen M H, et al. High temperature oxidation of Fe?Al and Fe?Cr?Al alloys: The role of Cr as a chemically active element. Corros Sci, 2010, 52(10): 3394 doi: 10.1016/j.corsci.2010.06.019 [42] Zelenitsas K, Tsakiropoulos P. Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb–Ti–Si in situ composites at 800 ℃. Mater Sci Eng A, 2006, 416(1-2): 269 doi: 10.1016/j.msea.2005.10.017 [43] Unocic K A, Yamamoto Y, Pint B A. Effect of Al and Cr content on air and steam oxidation of FeCrAl alloys and commercial APMT alloy. Oxid Met, 2017, 87(3): 431 [44] Yang W, Choi K, Baik K H, et al. Oxidation behaviors of Si/Al pack cementation coated Mo?3Si?1B alloys at various temperatures. Met Mater Int, 2021, 27(5): 914 doi: 10.1007/s12540-019-00471-4 [45] Chaia N, Cury P L, Rodrigues G, et al. Aluminide and silicide diffusion coatings by pack cementation for Nb?Ti?Al alloy. Surf Coat Technol, 2020, 389: 125675 doi: 10.1016/j.surfcoat.2020.125675 [46] Wu Y N, Wang Q M, Ke P L, et al. Evaluation of arc ion plated NiCoCrAlYSiB coatings after oxidation at 900?1100 ℃. Surf Coat Technol, 2006, 200(9): 2857 doi: 10.1016/j.surfcoat.2005.04.055 [47] Sarkar S, Datta S, Das S, et al. Oxidation protection of gamma-titanium aluminide using glass-ceramic coatings. Surf Coat Technol, 2009, 203(13): 1797 doi: 10.1016/j.surfcoat.2008.12.029 [48] Yang Y F, Ren P, Bao Z B, et al. Isothermal oxidation of four typical high-temperature protective coatings. Surf Technol, 2020, 49(1): 49 doi: 10.16490/j.cnki.issn.1001-3660.2020.01.006陽穎飛, 任盼, 鮑澤斌, 等. 四種典型高溫防護涂層的抗氧化性能. 表面技術, 2020, 49(1):49 doi: 10.16490/j.cnki.issn.1001-3660.2020.01.006 [49] Wang X Y, Xin L, Wei H, et al. Progress of high-temperature protective coatings. Corros Sci Prot Technol, 2013, 25(3): 175王心悅, 辛麗, 韋華, 等. 高溫防護涂層研究進展. 腐蝕科學與防護技術, 2013, 25(3):175 [50] Knaster J, Moeslang A, Muroga T. Materials research for fusion. Nat Phys, 2016, 12(5): 424 doi: 10.1038/nphys3735 [51] Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales. Oxid Met, 1995, 44(1): 113 [52] Fujiwara M, Natesan K, Satou M, et al. Effects of doping elements on oxidation properties of low-activation vanadium alloys. Mater Trans, 2001, 42(6): 1048 doi: 10.2320/matertrans.42.1048 [53] Fujiwara M, Takanashi K, Satou M, et al. Influence of Cr, Ti concentrations on oxidation and corrosion resistance of V?Cr?Ti type alloys. J Nucl Mater, 2004, 329-333: 452 doi: 10.1016/j.jnucmat.2004.04.090 [54] Satou M, Abe K, Kayano H. High-temperature deformation of modified V?Ti?Cr?Si type alloys. J Nucl Mater, 1991, 179-181: 757 doi: 10.1016/0022-3115(91)90199-H [55] Sakai K, Satou M, Fujiwara M, et al. Mechanical properties and microstructures of high-chromium V?Cr?Ti type alloys. J Nucl Mater, 2004, 329-333: 457 doi: 10.1016/j.jnucmat.2004.04.089 [56] Fujiwara M, Sakamoto T, Satou M, et al. Improvement of corrosion resistance of vanadium alloys in high-temperature pressurized water. Mater Trans, 2005, 46(3): 517 doi: 10.2320/matertrans.46.517 [57] Yang S W. Effect of Ti and Ta on the oxidation of a complex superalloy. Oxid Met, 1981, 15(5): 375 [58] Matsushima T, Satou M, Hasegawa A, et al. Tensile properties of a series of V?4Ti?4Cr alloys containing small amounts of Si, Al and Y, and the influence of helium implantation. J Nucl Mater, 1998, 258-263: 1497 doi: 10.1016/S0022-3115(98)00212-8 [59] Fujiwara M, Satou M, Hasegawa A, et al. Rapid oxidation and its effects on mechanical properties of V?Ti?Cr?Si type alloys. J Nucl Mater, 1998, 258-263: 1507 doi: 10.1016/S0022-3115(98)00214-1 [60] Satou M, Abe K, Kayano H, et al. Low swelling behavior of V?Ti?Cr?Si?type alloys. J Nucl Mater, 1992, 191-194: 956 doi: 10.1016/0022-3115(92)90615-R [61] Satou M, Abe K, Kayano H. Tensile properties and microstructures of neutron irradiated V?Ti?Cr?Si type alloys. J Nucl Mater, 1994, 212-215: 794 doi: 10.1016/0022-3115(94)90165-1 [62] Fujiwara M, Satou M, Hasegawa A, et al. Oxidation and hardness profile of V?Ti?Cr?Si?Al?Y alloys. J Nucl Mater, 2000, 283-287: 1311 doi: 10.1016/S0022-3115(00)00386-X [63] Chen J M, Qiu S Y, Yang L, et al. Effects of oxygen, hydrogen and neutron irradiation on the mechanical properties of several vanadium alloys. J Nucl Mater, 2002, 302(2-3): 135 doi: 10.1016/S0022-3115(02)00775-4 [64] Gao S, He B, Zhou L Z, et al. Effects of Ta on the high temperature oxidation behavior of IN617 alloy in air. Corros Sci, 2020, 170: 108682 doi: 10.1016/j.corsci.2020.108682 [65] Meyer M K, Akinc M. Oxidation behavior of boron-modified Mo5Si3 at 800-1300 oC. J Am Ceram Soc, 1996, 79(4): 938 doi: 10.1111/j.1151-2916.1996.tb08528.x [66] Williams J, Akinc M. Oxidation behavior of V5Si3 based materials. Intermetallics, 1998, 6(4): 269 doi: 10.1016/S0966-9795(97)00081-2 [67] Krüger M. High temperature compression strength and oxidation of a V-9Si-13B alloy. Scr Mater, 2016, 121: 75 doi: 10.1016/j.scriptamat.2016.04.042 [68] Jain U, Sonber J, Tewari R. High temperature oxidation behaviour of V–Ti–Ta alloys. Fusion Eng Des, 2019, 144: 125 doi: 10.1016/j.fusengdes.2019.04.070 [69] Mathieu S, Chaia N, Le Flem M, et al. Multi-layered silicides coating for vanadium alloys for generation IV reactors. Surf Coat Technol, 2012, 206(22): 4594 doi: 10.1016/j.surfcoat.2012.05.016 [70] Heo N J, Nagasaka T, Muroga T. Recrystallization and precipitation behavior of low-activation V–Cr–Ti alloys after cold rolling. J Nucl Mater, 2004, 325(1): 53 doi: 10.1016/j.jnucmat.2003.10.012 [71] Fukumoto K, Morimura T, Tanaka T, et al. Mechanical properties of vanadium based alloys for fusion reactor. J Nucl Mater, 1996, 239: 170 doi: 10.1016/S0022-3115(96)00467-9 [72] Chaia N, Mathieu S, Cozzika T, et al. An overview of the oxidation performance of silicide diffusion coatings for vanadium-based alloys for generation IV reactors. Corros Sci, 2013, 66: 285 doi: 10.1016/j.corsci.2012.09.031 [73] Chaia N, Bouizi Y, Mathieu S, et al. Isothermal and cyclic oxidation behaviour of hot-pressed MSi2 compounds (with M = V, Ti, Cr). Intermetallics, 2015, 65: 35 doi: 10.1016/j.intermet.2015.05.005 [74] Tobin A, Busch G. Evaluation of surface modifications for oxidation protection of vanadium-base alloys in helium-cooled blanket designs. J Nucl Mater, 1986, 141-143: 604 doi: 10.1016/0022-3115(86)90061-9 [75] Peng X X. Preparation and Properties of V−Al/Al2O3 Tritium Barrier Coating on V−5Cr−5Ti Surface [Dissertation]. Beijing: China Academy of Engineering Physics, 2016彭雪星. V−5Cr−5Ti表面V−Al/Al2O3阻氚涂層的制備及性能研究[學位論文]. 北京: 中國工程物理研究院, 2016 [76] Peng X X, Zhang G K, Yang F L, et al. Fabrication and characterization of aluminide coating on V?5Cr?5Ti by electrodeposition and subsequent heat treating. Int J Hydrog Energy, 2016, 41(21): 8935 doi: 10.1016/j.ijhydene.2016.04.067 [77] Bao Z B, Jiang C Y, Zhu S L, et al. High temperature protective bond coats: Development and effect of reactive element. J Aeronaut Mater, 2018, 38(2): 21 doi: 10.11868/j.issn.1005-5053.2018.001004鮑澤斌, 蔣成洋, 朱圣龍, 等. 高溫防護金屬涂層的發展及活性元素效應. 航空材料學報, 2018, 38(2):21 doi: 10.11868/j.issn.1005-5053.2018.001004 [78] Tang Z L, Wang F H, Wang Q J, et al. Effect of coatings on oxidafion resistance and mechanical properties of ti60 alloy. Acta Met Sin, 1998(3): 325唐兆麟, 王福會, 王清江, 等. 涂層對Ti60合金高溫氧化性能及力學性能的影響. 金屬學報, 1998(3):325 [79] Tang Z L, Wang F H, Wu W T. Effect of Al2O3 and enamel coatings on 900℃ oxidation and hot corrosion behaviors of gamma-TiAl. Mater Sci Eng A, 2000, 276(1-2): 70 doi: 10.1016/S0921-5093(99)00513-4 [80] Wu Y N, Zhang G, Feng Z C, et al. Oxidation behavior of laser remelted plasma sprayed NiCrAlY and NiCrAlY–Al2O3 coatings. Surf Coat Technol, 2001, 138(1): 56 doi: 10.1016/S0257-8972(00)01102-6 [81] Sabanayagam S, Chockalingam S. Analysis of high temperature oxidation behaviour of SS316 by Al2O3 and Cr2O3 coating. Mater Today Proc, 2020, 33: 2641 doi: 10.1016/j.matpr.2020.01.218 [82] Li W B, Zhu S L, Wang C, et al. SiO2?Al2O3?glass composite coating on Ti?6Al?4V alloy: Oxidation and interfacial reaction behavior. Corros Sci, 2013, 74: 367 doi: 10.1016/j.corsci.2013.05.010 [83] Keyvani A, Saremi M, Sohi M H. An investigation on oxidation, hot corrosion and mechanical properties of plasma-sprayed conventional and nanostructured YSZ coatings. Surf Coat Technol, 2011, 206(2-3): 208 doi: 10.1016/j.surfcoat.2011.06.036 [84] Li H Q, Wang Q M, Jiang S M, et al. Ion-plated Al?Al2O3 films as diffusion barriers between NiCrAlY coating and orthorhombic-Ti2AlNb alloy. Corros Sci, 2010, 52(5): 1668 doi: 10.1016/j.corsci.2010.02.002 [85] He D, Lei Y, Zhang C, et al. Deuterium permeation of Al2O3/Cr2O3 composite film on 316L stainless steel. Int J Hydrog Energy, 2015, 40(6): 2899 doi: 10.1016/j.ijhydene.2014.12.058 [86] Song X M, Zhang J M, Liu Z W, et al. Thermal shock resistance of YSZ, YSZ–Al2O3 and YSZ–Al2O3/YSZ coatings. Vacuum, 2019, 162: 150 doi: 10.1016/j.vacuum.2019.01.038 [87] McKee D W, Luthra K L. Plasma-sprayed coatings for titanium alloy oxidation protection. Surf Coat Technol, 1993, 56(2): 109 doi: 10.1016/0257-8972(93)90014-F [88] Jiang W Z, Li Y J. Enamel and Enamel Glass. Beijing: Beijing Light Industry Press, 2015蔣偉忠, 厲益駿. 搪瓷與搪玻璃. 北京: 北京輕工業出版社, 2015 [89] Liao Y M, Chen M H, Wang F H, et al. Self-healing high-temperature protective metal-enamel composite coatings. Surf Technol, 2020, 49(1): 25 doi: 10.16490/j.cnki.issn.1001-3660.2020.01.003廖依敏, 陳明輝, 王福會, 等. 自修復金屬搪瓷高溫防護涂層. 表面技術, 2020, 49(1):25 doi: 10.16490/j.cnki.issn.1001-3660.2020.01.003 [90] Zhu D M, Lou X, Luo F, et al. Preparation and properties of borate glass coatings on Ti-based alloy substrates. Trans Nonferrous Met Soc China, 2007, 17(Suppl 1): 766 [91] Xiong Y M, Zhu S L, Wang F H. The oxidation behavior of TiAlNb intermetallics with coatings at 800 ℃. Surf Coat Technol, 2005, 197(2-3): 322 doi: 10.1016/j.surfcoat.2004.11.019 [92] Shishkov N V. Protective enamels for vanadium and its alloys. Glass Ceram, 1996, 53(7): 216 doi: 10.1007/BF01166389 [93] Wang F H. The effect of nanocrystallization on the selective oxidation and adhesion of Al2O3 scales. Oxid Met, 1997, 48(3): 215 [94] Va?en R, Jarligo M O, Steinke T, et al. Overview on advanced thermal barrier coatings. Surf Coat Technol, 2010, 205(4): 938 doi: 10.1016/j.surfcoat.2010.08.151 [95] Zhang G W, Han W T, Cui L J, et al. Preliminary study on diffusion bonding of V?4Cr?4Ti/Ti by hot forging process. Rare Met Mater Eng, 2018, 47(5): 1537張高偉, 韓文妥, 崔麗娟, 等. V?4Cr?4Ti/Ti擴散連接的初步研究. 稀有金屬材料與工程, 2018, 47(5):1537 [96] Ramanarayanan T A, Raghavan M, Petkovic-Luton R. Metallic yttrium additions to high temperature alloys: Influence on Al2O3 scale properties. Oxid Met, 1984, 22(3): 83 [97] Saremi M, Afrasiabi A, Kobayashi A. Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation. Surf Coat Technol, 2008, 202(14): 3233 doi: 10.1016/j.surfcoat.2007.11.029 [98] Rabiei A, Evans A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta Mater, 2000, 48(15): 3963 doi: 10.1016/S1359-6454(00)00171-3 -