Research advancements in the use of TiO2-based materials for the photocatalytic degradation of volatile organic compounds
-
摘要: 揮發性有機污染物(VOCs)大量排放導致的人體健康和環境問題已引起廣泛關注,如何高效環保地去除VOCs一直是催化化工行業領域的熱點和難題之一。光催化氧化技術(PCO)被認為是有效的環境污染物治理方法之一。TiO2作為研究時間最長的光催化劑,具有成本效益高、穩定性好和光催化降解能力強等優點。然而,無法利用可見光和光激發電荷載流子分離效率低等瓶頸問題始終制約著其進一步發展。通過改性來克服TiO2固有限制和提高TiO2光催化氧化降解VOCs能力勢在必行,立足于TiO2光催化去除VOCs的基本原理,面向影響光催化反應的關鍵因素,從摻雜、半導體復合、缺陷工程、晶面工程、載體吸附和形貌調控等幾個方面出發對近年TiO2基材料設計及其在光催化降解VOCs領域應用的研究進行了系統的歸納和總結,并對如何進一步改進基于TiO2的光催化氧化VOCs技術提出展望。Abstract: Human health and environmental concerns caused by the massive volatile organic compound (VOC) emission have attracted widespread attention recently. VOCs are toxic and difficult to eliminate; moreover, they come from a wide variety of sources. Efficient and environmentally friendly removal of VOCs has always been one of the primary concerns in the catalytic chemical industry. Presently, the commonly used methods for VOC removal include absorption?adsorption, biodegradation, thermal catalysis, and membrane separation. However, these methods have several drawbacks, such as high initial investment, expensive materials, high energy consumption, low catalyst efficiency, and incomplete treatment. Photocatalytic oxidation (PCO) technology is considered to be one of the effective methods of environmental pollution control. PCO can directly use solar energy to remove various environmental pollutants. Thus, PCO has inherent advantages such as low consumption, environmental protection, no secondary pollution, and convenience. Photocatalyst is a core step in the PCO process, and as aphotocatalyst studied for the longest time, titanium dioxide (TiO2) has the advantages of high cost-effectiveness, good stability, strong photocatalytic degradation capability, and producing no harmful byproducts. However, bottleneck problems such as the inability to utilize visible light and low separation efficiency of photoexcited charge carriers have always restricted its advancement. Thus, the inherent limitations of TiO2 need to be overcome, and its capability to degrade VOCs via PCO needs to be improved. These modifications can improve the PCO performance through the following mechanisms: (1) By introducing electron trapping levels in the bandgap, which will create some defects in the TiO2 lattice and help trap charge carriers, and (2) by slowing down the electron carrier loading rate to increase VOC degradation. Thus, considering the basic principle of TiO2 photocatalytic removal of VOCs, this study focuses on the key factors affecting the photocatalytic reaction. Beginning with aspects such as metal/nonmetal doping, semiconductor recombination, defect engineering, crystal plane engineering, carrier adsorption, and morphology control, the research on the design of TiO2-based materials and their application in the field of photocatalytic degradation of VOCs in recent years are systematically summarized; moreover, a brief introduction of its control parameters and applications in practical engineering and prospects on how to further improve the use of TiO2-based materials for the PCO technology of VOCs is provided. This review will provide parameter support and optimization suggestions for the research on the degradation of VOCs by TiO2-based photocatalytic materials to help researchers lay the foundation for future research.
-
Key words:
- TiO2 /
- modification /
- photocatalysis /
- indoor and outdoor pollution /
- VOCs
-
Catalysts Toluene concentration/
(mg·m?3)photocatalyst
dosage /mgTime/min Removal efficiency/% Light source Pt/MoS2@TiO2 50 50 25 91.5 300 W xenon lamp (simulated sunlight) Ag/TiO2/CA 300 1000 50 95.7 UV light Bi/Zn@TiO2 280 100 50 93.0 300 W xenon lamp (simulated sunlight) TiO2/WO3 360 100 50 65.0 300 W xenon lamp (simulated sunlight) Ag/Ag2O@TiO2 331 100 15 99.3 8W UV lamp Ag/Ag2O@TiO2 331 100 25 48.3 300 W xenon lamp (simulated sunlight/visible light) Ag/Ag2O@TiO2 331 100 45 28.5 Natural sunlight 表 2 工程案例主要設備參數
Table 2. Main equipment parameters of the project case
Device name Device parameters Photocatalytic oxidation device 2400 mm×1400 mm×1200 mm;
Power=5.25 kWCatalyst of light Graphene–nickel foam/TiO2(nickel foam is the carrier) Fan ZYF-6C-11kW, flow = 600 m3·h?1, power =
11 kW, full pressure =3000 PaDistribution Cabinet ABB Inverter:ACS 510;
Siemens PLC: S7-200 smart;
Schneider series: Intermediate relay RXM;
Contactor: LC1DCollection line Pipe diameter: DN450 mm Chimney Chimney height = 15000 mm;
Pipe diameter: DN450 mm;
Plexiglass material表 3 不同光催化劑在氣態乙醛的PCO中的比較[52]
Table 3. Comparison of different photocatalysts in the PCO of gaseous acetaldehyde[52]
Photocatalyst SBET/(m2·g?1) Photocatalyst/g Gas/(mg·m?3) Dynamic/(mL·min?1) Light Time/min Degradation efficiency/% g-C3N4/Ag?TiO2 71.62 0.1 45.8 20 Visible light 160 69.5 Cu/WO3@Cu/N?TiO2 93.60 0.1 1116.4 static Visible light 1440 66.0 Fe?TiO2 13.30 0.17 173.9 7000 Visible light 1050 65 N?TiO2@aTiO2 142.40 0.1 915.1 10 Visible light 360 25.0 TiO2?UiO?66?NH2 280.56 0.1 54.9 100 UV light 720 70.7 MT@rGO 16.80 0.1 915.1 8 UV-visible light 150 70.0 rGO?TiO2 227.30 0.1 45.8 80 UV light 160 42.0 www.77susu.com -
參考文獻
[1] álvarez-García S, Gutiérrez S, Casquero P A. Use of VOC Chambers to evaluate the impact of microbial volatile compounds on dry grain insect pests. MethodsX, 2022, 9: 101734 doi: 10.1016/j.mex.2022.101734 [2] Liu C H, Gao J C. Analysis on the hazard control technology of volatile organic compounds. IOP Conf Ser Earth Environ Sci. 2021, 791(1): 012166 [3] Wang X C, Song Y Y, Han Q X. Research progress of photocatalytic degradation of indoor formaldehyde. J Funct Mater, 2021, 52(5): 5076 doi: 10.3969/j.issn.1001-9731.2021.05.011王學川, 宋云云, 韓慶鑫. TiO2及其復合材料光催化降解室內甲醛的研究進展. 功能材料, 2021, 52(5):5076 doi: 10.3969/j.issn.1001-9731.2021.05.011 [4] Chen H Y, Liu J M, Yuan S Y, et al. Fabrication of Fe3O4@C core-shell particles and its application in UV-Fenton oxidize removal of VOCs. Chin J Eng, 2017, 39(8): 1166陳海英, 劉杰民, 袁司夷, 等. 核殼結構Fe3O4@C粒子在UV-Fenton氧化去除VOCs過程中的吸附?催化作用. 工程科學學報, 2017, 39(8):1166 [5] Yang C T, Miao G, Pi Y H, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem Eng J, 2019, 370: 1128 doi: 10.1016/j.cej.2019.03.232 [6] Li X, Ma J, Ling X. Design and dynamic behaviour investigation of a novel VOC recovery system based on a deep condensation process. Cryogenics, 2020, 107: 103060 doi: 10.1016/j.cryogenics.2020.103060 [7] Li T, Li H, Li C L. A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air. Chemosphere, 2020, 250: 126338 doi: 10.1016/j.chemosphere.2020.126338 [8] Chen Z L, Lin X Q, Zhang S, et al. Thermal cotreatment of municipal solid waste incineration fly ash with sewage sludge for PCDD/Fs decomposition and reformation suppression. J Hazard Mater, 2021, 416: 126216 doi: 10.1016/j.jhazmat.2021.126216 [9] Zheng F, Guo M, Zhang M. Hydrothermal preparation of WO3 nanorod arrays and their photocatalytic properties. J Univ Sci Technol Beijing, 2014, 36(6): 810鄭鋒, 郭敏, 張梅. 水熱法制備WO3納米棒陣列及其光催化性能. 北京科技大學學報, 2014, 36(6):810 [10] Li Z Y, Liu J D, Gao B, et al. Cu-Mn-CeOx loaded ceramic catalyst for non-thermal sterilization and microwave thermal catalysis of VOCs degradation. Chem Eng J, 2022, 442: 136288 doi: 10.1016/j.cej.2022.136288 [11] Wu N, Yang Z K, Li Y, et al. Research progress in VOCs treatment technology. Mod Chem Ind, 2020, 40(2): 17 doi: 10.16606/j.cnki.issn0253-4320.2020.02.004武寧, 楊忠凱, 李玉, 等. 揮發性有機物治理技術研究進展. 現代化工, 2020, 40(2):17 doi: 10.16606/j.cnki.issn0253-4320.2020.02.004 [12] Castel C, Favre E. Membrane separations and energy efficiency. J Membr Sci, 2018, 548: 345 doi: 10.1016/j.memsci.2017.11.035 [13] Lincho J, Zaleska-Medynska A, Martins R C, et al. Nanostructured photocatalysts for the abatement of contaminants by photocatalysis and photocatalytic ozonation: An overview. Sci Total Environ, 2022, 837: 155776 doi: 10.1016/j.scitotenv.2022.155776 [14] Koe W S, Lee J W, Chong W C, et al. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res Int, 2020, 27(3): 2522 doi: 10.1007/s11356-019-07193-5 [15] Xu C P, Ravi Anusuyadevi P, Aymonier C, et al. Nanostructured materials for photocatalysis. Chem Soc Rev, 2019, 48(14): 3868 doi: 10.1039/C9CS00102F [16] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37 doi: 10.1038/238037a0 [17] Jiang L W, Liu W L, Wu A H, et al. Synthesis of titanium dioxide nanopowders by a low-temperature combustion method. J Univ Sci Technol Beijing, 2012, 34(11): 1314 doi: 10.13374/j.issn1001-053x.2012.11.001姜林文, 劉維良, 武安華, 等. 低溫燃燒法合成納米二氧化鈦粉體研究. 北京科技大學學報, 2012, 34(11):1314 doi: 10.13374/j.issn1001-053x.2012.11.001 [18] Li R, Xia Y, Xu L, et al. Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance. Chin J Eng, 2020, 42(1): 78李蕊, 夏仡, 許磊, 等. 微波水熱法快速合成氧化鋅納米棒及其光催化性能. 工程科學學報, 2020, 42(1):78 [19] Zhao M D, Li Y L, Wang J S. Recent progress of graphitic phase carbon nitride photocatalytic materials on solar energy conversion. Chin J Eng, 2022, 44(4): 641 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204016趙夢迪, 李永利, 王金淑. g-C3N4材料在光催化能源轉換領域的新進展. 工程科學學報, 2022, 44(4):641 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204016 [20] Zhang K, Ding H L, Pan W G, et al. Research progress of a composite metal oxide catalyst for VOC degradation. Environ Sci Technol, 2022, 56(13): 9220 doi: 10.1021/acs.est.2c02772 [21] Elkodous M A, El-Sayyad G S, Maksoud M I A A, et al. Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment. J Hazard Mater, 2021, 410: 124657 doi: 10.1016/j.jhazmat.2020.124657 [22] Suzuki K, Mizuno N, Yamaguchi K. Polyoxometalate photocatalysis for liquid-phase selective organic functional group transformations. ACS Catal, 2018, 8(11): 10809 doi: 10.1021/acscatal.8b03498 [23] El Khawaja R, Sonar S, Barakat T, et al. VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles. Catal Today, https://doi.org/10.1016/j.cattod.2022.05.022 [24] Guo Q, Ma Z B, Zhou C Y, et al. Single molecule photocatalysis on TiO2 surfaces. Chem Rev, 2019, 119(20): 11020 doi: 10.1021/acs.chemrev.9b00226 [25] Guo Q, Zhou C Y, Ma Z B, et al. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv Mater, 2019, 31(50): 1901997 doi: 10.1002/adma.201901997 [26] Chen J F, Chen L, Wang X, et al. Er single atoms decorated TiO2 and Er3+ ions modified TiO2 for photocatalytic oxidation of mixed VOCs. Appl Surf Sci, 2022, 596: 153655 doi: 10.1016/j.apsusc.2022.153655 [27] Zhang J H, Hu Y, Qin J X, et al. TiO2?UiO?66?NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chem Eng J, 2020, 385: 123814 doi: 10.1016/j.cej.2019.123814 [28] Liu Y X, Wang M, Li D, et al. Engineering self-doped surface defects of anatase TiO2 nanosheets for enhanced photocatalytic efficiency. Appl Surf Sci, 2021, 540: 148330 doi: 10.1016/j.apsusc.2020.148330 [29] Dong Y S, Fei X N, Zhou Y Z. Synthesis and photocatalytic activity of mesoporous – (001) facets TiO2 single crystals. Appl Surf Sci, 2017, 403: 662 doi: 10.1016/j.apsusc.2017.01.210 [30] Kotzias D, Binas V, Kiriakidis G. Smart surfaces: photocatalytic degradation of priority pollutants on TiO2-based coatings in indoor and outdoor environments-Principles and mechanisms. Materials, 2022, 15(2): 402 doi: 10.3390/ma15020402 [31] Shayegan Z, Lee C S, Haghighat F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review. Chem Eng J, 2018, 334: 2408 doi: 10.1016/j.cej.2017.09.153 [32] Li D Z, Li S, Zhao D F, et al. Research progress in TiO2 photocatalyst for VOCs degradation. Mod Chem Ind, 2017, 37(11): 39李東澤, 李石, 趙東風, 等. 用于VOCs降解的TiO2光催化劑的研究進展. 現代化工, 2017, 37(11):39 [33] Cha B, Woo T, Han S, et al. Surface modification of TiO2 for obtaining high resistance against poisoning during photocatalytic decomposition of toluene. Catalysts, 2018, 8(11): 500 doi: 10.3390/catal8110500 [34] Shayegan Z, Haghighat F, Lee C S. Photocatalytic oxidation of volatile organic compounds for indoor environment applications: Three different scaled setups. Chem Eng J, 2019, 357: 533 doi: 10.1016/j.cej.2018.09.167 [35] Zhang L F, Moralejo C, Anderson W A. A review of the influence of humidity on photocatalytic decomposition of gaseous pollutants on TiO2‐based catalysts. Can J Chem Eng, 2019, 98(1): 263 [36] Lin L, Bao Y P, Wang M, et al. Influence of titania modification on phosphorus enrichment in P-bearing steelmaking slag. J Univ Sci Technol Beijing, 2014, 36(8): 1013 doi: 10.13374/j.issn1001-053x.2014.08.004林路, 包燕平, 王敏, 等. 二氧化鈦改質對含磷轉爐渣中磷富集行為的影響. 北京科技大學學報, 2014, 36(8):1013 doi: 10.13374/j.issn1001-053x.2014.08.004 [37] Basavarajappa P S, Patil S B, Ganganagappa N, et al. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrog Energy, 2020, 45(13): 7764 doi: 10.1016/j.ijhydene.2019.07.241 [38] Chang S M, Liu W S. The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts. Appl Catal B:Environ, 2014, 156-157: 466 doi: 10.1016/j.apcatb.2014.03.044 [39] Saqlain S, Cha B J, Kim S Y, et al. Visible light-responsive Fe-loaded TiO2 photocatalysts for total oxidation of acetaldehyde: Fundamental studies towards large-scale production and applications. Appl Surf Sci, 2020, 505: 144160 doi: 10.1016/j.apsusc.2019.144160 [40] Chen M, Wang H H, Chen X Y, et al. High-performance of Cu-TiO2 for photocatalytic oxidation of formaldehyde under visible light and the mechanism study. Chem Eng J, 2020, 390: 124481 doi: 10.1016/j.cej.2020.124481 [41] Murcia J J, Hidalgo M C, Navío J A, et al. Ethanol partial photoxidation on Pt/TiO2 catalysts as green route for acetaldehyde synthesis. Catal Today, 2012, 196(1): 101 doi: 10.1016/j.cattod.2012.02.033 [42] Qu J F, Chen D Y, Li N J, et al. Ternary photocatalyst of atomic-scale Pt coupled with MoS2 co-loaded on TiO2 surface for highly efficient degradation of gaseous toluene. Appl Catal B:Environ, 2019, 256: 117877 doi: 10.1016/j.apcatb.2019.117877 [43] Zhao S Q, Guo M, Zhang M, et al. Synthesis and photocatalytic properties of TiO2 nanopowders codoped with Eu3+ and Y3+ ions. J Univ Sci Technol Beijing, 2010, 32(3): 355趙斯琴, 郭敏, 張梅, 等. Y3+和Eu3+離子共摻雜TiO2納米材料的制備及其光催化性能. 北京科技大學學報, 2010, 32(3):355 [44] Khalilzadeh A, Fatemi S. Spouted bed reactor for VOC removal by modified nano-TiO2 photocatalytic particles. Chem Eng Res Des, 2016, 115: 241 doi: 10.1016/j.cherd.2016.10.004 [45] Tian L J, Xing L, Shen X, et al. Visible light enhanced Fe–I–TiO2 photocatalysts for the degradation of gaseous benzene. Atmos Pollut Res, 2020, 11(1): 179 doi: 10.1016/j.apr.2019.10.005 [46] Xue X L, Gong X W, Chen X Y, et al. A facile synthesis of Ag/Ag2O@TiO2 for toluene degradation under UV–visible light: Effect of Ag formation by partial reduction of Ag2O on photocatalyst stability. J Phys Chem Solids, 2021, 150: 109799 doi: 10.1016/j.jpcs.2020.109799 [47] Guo D W, Feng D D, Zhang Y L, et al. Synergistic mechanism of biochar-nano TiO2 adsorption-photocatalytic oxidation of toluene. Fuel Process Technol, 2022, 229: 107200 doi: 10.1016/j.fuproc.2022.107200 [48] Fernández-Catalá J, Berenguer-Murcia á, Cazorla-Amorós D. Study of MWCNT dispersion effect in TiO2-MWCNT composites for gas-phase propene photooxidation. Mater Res Bull, 2021, 134: 111089 doi: 10.1016/j.materresbull.2020.111089 [49] Tobaldi D M, Dvoranová D, Lajaunie L, et al. Graphene-TiO2 hybrids for photocatalytic aided removal of VOCs and nitrogen oxides from outdoor environment. Chem Eng J, 2021, 405: 126651 doi: 10.1016/j.cej.2020.126651 [50] Ministry of Environmental Protection, People’s Republic of China. GBHJ38—2017 Gas Chromatographic Method. Beijing: Ministry of Environmental Protection, 2018中華人民共和國環境保護部. GBHJ38—2017氣相色譜法. 北京: 環境保護部, 2018 [51] Environmental Protection Department of Jiangsu Province. DB323151—2016 Emission Standard of Volatile Organic Compounds for Chemical Industry. Jiangsu: Environmental Protection Department, 2016江蘇省環境保護廳. DB323151—2016化學工業揮發性有機化合物排放標準. 江蘇: 環境保護廳, 2016 [52] Wang C Y, Rao Z P, Mahmood A, et al. Improved photocatalytic oxidation performance of gaseous acetaldehyde by ternary g-C3N4/Ag-TiO2 composites under visible light. J Colloid Interface Sci, 2021, 602: 699 doi: 10.1016/j.jcis.2021.05.186 [53] Zhao C F, Yang Y H, Luo L, et al. γ-ray induced formation of oxygen vacancies and Ti3+ defects in anatase TiO2 for efficient photocatalytic organic pollutant degradation. Sci Total Environ, 2020, 747: 141533 doi: 10.1016/j.scitotenv.2020.141533 [54] Xie H, Li N, Chen X Z, et al. Surface oxygen vacancies promoted photodegradation of benzene on TiO2 film. Appl Surf Sci, 2020, 511: 145597 doi: 10.1016/j.apsusc.2020.145597 [55] Weon S, Choi E, Kim H, et al. Active{001}facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: From material development to commercial indoor air cleaner application. Environ Sci Technol, 2018, 52(16): 9330 doi: 10.1021/acs.est.8b02282 [56] Valero-Romero M J, Santaclara J G, Oar-Arteta L, et al. Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis. Chem Eng J, 2019, 360: 75 doi: 10.1016/j.cej.2018.11.132 [57] Hu X L, Song J Y, Zheng S L, et al. Insight into the defective sites of TiO2/sepiolite composite on formaldehyde removal and H2 evolution. Mater Today Energy, 2022, 24: 100932 doi: 10.1016/j.mtener.2021.100932 [58] Man Z, Meng Y, Lin X C, et al. Assembling UiO-66@TiO2 nanocomposites for efficient photocatalytic degradation of dimethyl sulfide. Chem Eng J, 2022, 431: 133952 doi: 10.1016/j.cej.2021.133952 [59] Weon S, Choi W. TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds. Environ Sci Technol, 2016, 50(5): 2556 doi: 10.1021/acs.est.5b05418 -