Evaluating the performances of surface-modified titanium bipolar plates using in situ nitriding by plasma-enhanced chemical vapor deposition
-
摘要: 為了提升鈦雙極板的導電性和耐腐蝕性,利用氮氣等離子體原位滲氮法對鈦片(TA2)進行表面改性,制備了系列氮化鈦涂層,系統研究了反應溫度和滲氮時間對涂層表面形貌、疏水性、界面導電性和耐腐蝕性的影響。結果表明,溫度過高會導致氮化鈦生長過快,顆粒尺寸較大;溫度較低不利于表面反應,涂層不能完全覆蓋鈦基底;滲氮時間較短,表面生成不規則的納米生長核,致使涂層不平整、鈦基底裸露;滲氮時間過長,涂層呈階梯堆垛狀,平整度降低。650 °C下滲氮90 min制備的氮化鈦涂層(TiN-650-90)均勻平整,組成為TiN0.26;TiN-650-90的水接觸角提升至105.4°,表面疏水性有利于改善燃料電池的水管理性能;界面接觸電阻(ICR)隨加載壓力增大而降低,2.75 MPa時TiN-650-90的ICR穩定至6.5 mΩ·cm2,滿足美國能源部(DOE)要求(≤10 mΩ·cm2);TiN-650-90的腐蝕電流密度為0.56 μA·cm–2,–0.1 V恒電位下的電流密度為0.67 μA·cm–2,耐腐性和穩定性較鈦的明顯提升。該方法制備氮化鈦涂層表面改性鈦雙極板,具有沉積溫度低、速度快,疏水性、導電性和耐腐蝕性優良等優點,可為金屬雙極板表面改性提供方法借鑒和工藝參考。
-
關鍵詞:
- 鈦雙極板 /
- 表面改性 /
- 等離子體增強化學氣相沉積 /
- 原位滲氮 /
- 氮化鈦涂層
Abstract: In this study, the surface modification of titanium plates was performed using in situ nitriding via plasma-enhanced chemical vapor deposition to improve the conductivity and corrosion resistance of the plates. A series of titanium nitride (TiN) coatings were synthesized at different nitriding temperatures and durations. The influence of nitriding temperatures and durations on the surface morphology, hydrophobicity, interfacial conductivity, and corrosion resistance of the as-prepared coatings was investigated. The results indicated that faster growth and larger particle size of TiN are observed at higher temperatures. However, lower temperatures are unfavorable for surface reactions; thus, the coating cannot entirely cover the titanium substrate. Moreover, a shorter nitriding time results in irregular nanogrowth nuclei on the surface, leading to an uneven coating and bare titanium substrate. Conversely, longer nitriding time encourages the continuous accumulation of TiN nanoparticles and forms a uniform coating of the titanium substrate but decreases the flatness because of the stacking of the coatings due to the long nitriding time (120 min). The TiN coating prepared by nitriding at 650 °C for 90 min (TiN-650-90) is relatively compact and smooth with the composition of TiN0.26 and has an increased water contact angle of 105.4°. The change from hydrophilicity to hydrophobicity in TiN is beneficial to fuel cell water resistance. At a loading pressure of 1.5 MPa, the contact resistances of the coatings prepared at a nitriding time of 60 min can satisfy the U.S. Department of Energy requirement of less than 10 mΩ·cm2. Despite a contact resistance of 13.2 mΩ·cm2 for the TiN-650-90 coating, the contact resistance decreases with increasing loading pressure and is stable at 6.5 mΩ·cm2 under a loading pressure of 2.75 MPa. The corrosion current density of the TiN-650-90 coating is 0.56 μA·cm?2, and the corrosion potential positively shifts from ?0.37 to ?0.05 V at room temperature. The corrosion current density tested in the simulated operating environment of fuel cells is higher than that at room temperature but much lower than that of titanium (4.2 μA·cm?2). Furthermore, the current density is stable at 0.67 μA·cm?2 and at a ?0.1 V constant potential, indicating superior corrosion resistance and stability than titanium. The titanium bipolar plates modified by this method exhibit the advantages of relatively low deposition temperature, quick deposition speed, and good hydrophobicity, conductivity, and corrosion resistance. This work can pave the way for efficient surface modification of metal bipolar plates. -
圖 3 不同溫度和滲氮時間下制備的氮化鈦涂層的SEM圖像(a~h)和滲氮前后樣品的光學照片(i). (a) TiN-450;(b) TiN-550;(c) TiN-650;(d) TiN-750;(e) TiN-650-30;(f) TiN-650-60;(g) TiN-650-90;(h) TiN-650-120
Figure 3. SEM images (a–h) of titanium nitride coatings at different temperatures and nitriding time and optical photograph (i) of a prepared titanium nitride coating: (a) TiN-450; (b) TiN-550; (c) TiN-650; (d) TiN-750; (e) TiN-650-30; (f) TiN-650-60; (g) TiN-650-90; and (h) TiN-650-120.
圖 6 鈦基底與650 °C、不同滲氮時間下制備的氮化鈦涂層的接觸電阻. (a)和(c)不同加載壓力下的表面接觸電阻;(b)和(d) 1.5 MPa加載壓力下的表面接觸電阻
Figure 6. The interface contact resistance (ICR) of the titanium substrate and titanium nitride coatings prepared at 650 °C for different nitriding time: (a) and (c) ICR under various loading pressure; (b) and (d) ICR under the loading pressure of 1.5 MPa
表 1 鈦基底與不同溫度和滲氮時間制備的氮化鈦涂層的腐蝕電位和腐蝕電流密度
Table 1. Corrosion potential and current density values of the titanium substrate and titanium nitride coatings prepared at various temperatures and nitriding times
Samples Ecorr/(V vs SCE) Icorr/(μA·cm–2) Bare Ti –0.37 4.2 TiN-450 –0.295 2.5 TiN-550 –0.25 1.2 TiN-650 –0.05 0.56 TiN-750 –0.15 0.78 TiN-650-30 –0.335 1.25 TiN-650-60 –0.295 0.86 TiN-650-90 –0.05 0.56 TiN-650-120 –0.225 0.8 TiN-650-90 (tested at 70 °C) 0.05 2.47 www.77susu.com -
參考文獻
[1] Ren P, Pei P C, Li Y H, et al. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Prog Energy Combust Sci, 2020, 80: 100859 doi: 10.1016/j.pecs.2020.100859 [2] Brightman E, Hinds G, O'Malley R. In situ measurement of active catalyst surface area in fuel cell stacks. J Power Sources, 2013, 242: 244 doi: 10.1016/j.jpowsour.2013.05.046 [3] Meyer Q, Zeng Y C, Zhao C. In situ and operando characterization of proton exchange membrane fuel cells. Adv Mater, 2019, 31(40): e1901900 doi: 10.1002/adma.201901900 [4] Song Y X, Zhang C Z, Ling C Y, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell. Int J Hydrog Energy, 2020, 45(54): 29832 doi: 10.1016/j.ijhydene.2019.07.231 [5] Wang W L, He S M, Lan C H. Protective graphite coating on metallic bipolar plates for PEMFC applications. Electrochimica Acta, 2012, 62: 30 doi: 10.1016/j.electacta.2011.11.026 [6] Shimpalee S, Lilavivat V, McCrabb H, et al. Investigation of bipolar plate materials for proton exchange membrane fuel cells. Int J Hydrog Energy, 2016, 41(31): 13688 doi: 10.1016/j.ijhydene.2016.05.163 [7] Qiu D K, Yi P Y, Peng L F, et al. Study on shape error effect of metallic bipolar plate on the GDL contact pressure distribution in proton exchange membrane fuel cell. Int J Hydrog Energy, 2013, 38(16): 6762 doi: 10.1016/j.ijhydene.2013.03.105 [8] Yi S J, Chen J H, Li H Y, et al. Effect of graphite oxide on graphitization of furan resin carbon. Carbon, 2010, 48(3): 926 doi: 10.1016/j.carbon.2009.11.027 [9] Feng L L, Chen Y, Li J G, et al. Research progress in carbon-based composite molded bipolar plates. Chin J Eng, 2021, 43(5): 585馮利利, 陳越, 李吉剛, 等. 碳基復合材料模壓雙極板研究進展. 工程科學學報, 2021, 43(5):585 [10] Antunes R A, de Oliveira M C L, Ett G, et al. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. J Power Sources, 2011, 196(6): 2945 doi: 10.1016/j.jpowsour.2010.12.041 [11] Boyaci San F G, Tekin G. A review of thermoplastic composites for bipolar plate applications. Int J Energy Res, 2013, 37(4): 283 doi: 10.1002/er.3005 [12] Wang S H, Peng J, Lui W B. Surface modification and development of titanium bipolar plates for PEM fuel cells. J Power Sources, 2006, 160(1): 485 doi: 10.1016/j.jpowsour.2006.01.020 [13] Wang S H, Peng J, Lui W B, et al. Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells. J Power Sources, 2006, 162(1): 486 doi: 10.1016/j.jpowsour.2006.06.084 [14] Yu F, Wang K, Cui L Z, et al. Vertical-graphene-reinforced titanium alloy bipolar plates in fuel cells. Adv Mater, 2022, 34(21): e2110565 doi: 10.1002/adma.202110565 [15] Wang Y, Ruiz Diaz D F, Chen K S, et al. Materials, technological status, and fundamentals of PEM fuel cells — A review. Mater Today, 2020, 32: 178 doi: 10.1016/j.mattod.2019.06.005 [16] Asri N F, Husaini T, Sulong A B, et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review. Int J Hydrog Energy, 2017, 42(14): 9135 doi: 10.1016/j.ijhydene.2016.06.241 [17] Davies D P, Adcock P L, Turpin M, et al. Stainless steel as a bipolar plate material for solid polymer fuel cells. J Power Sources, 2000, 86(1-2): 237 doi: 10.1016/S0378-7753(99)00524-8 [18] Ren Z J, Zhang D M, Wang Z Y. Stacks with TiN/titanium as the bipolar plate for PEMFCs. Energy, 2012, 48(1): 577 doi: 10.1016/j.energy.2012.10.020 [19] Li C, Song J. Preparation and Characterization of TiN Coatings on Stainless Steel Under Various Partial Pressure of Nitrogen. Min Metall Eng, 2020, 40(3): 142 doi: 10.3969/j.issn.0253-6099.2020.03.036李聰, 宋俊. 不同氮氣分壓下不銹鋼基體氮化鈦涂層的制備及性能表征. 礦冶工程, 2020, 40(3):142 doi: 10.3969/j.issn.0253-6099.2020.03.036 [20] Zhang D M, Duan L T, Guo L, et al. TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating. Int J Hydrog Energy, 2011, 36(15): 9155 doi: 10.1016/j.ijhydene.2011.04.123 [21] Yi P, Zhu L J, Dong C F, et al. Corrosion and interfacial contact resistance of 316L stainless steel coated with magnetron sputtered ZrN and TiN in the simulated cathodic environment of a proton-exchange membrane fuel cell. Surf Coat Technol, 2019, 363: 198 doi: 10.1016/j.surfcoat.2019.02.027 [22] Deng Y, Chen W L, Li B X, et al. Physical vapor deposition technology for coated cutting tools: A review. Ceram Int, 2020, 46(11): 18373 doi: 10.1016/j.ceramint.2020.04.168 [23] Silva H S, Marciano F R, de Menezes A S, et al. Morphological analysis of the TiN thin film deposited by CCPN technique. J Mater Res Technol, 2020, 9(6): 13945 doi: 10.1016/j.jmrt.2020.09.080 [24] Xu Z T, Qiu D K, Yi P Y, et al. Towards mass applications: A review on the challenges and developments in metallic bipolar plates for PEMFC. Prog Nat Sci Mater Int, 2020, 30(6): 815 doi: 10.1016/j.pnsc.2020.10.015 [25] Bouzakis K D, Michailidis N, Skordaris G, et al. Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Ann, 2012, 61(2): 703 doi: 10.1016/j.cirp.2012.05.006 [26] Show Y. Electrically conductive amorphous carbon coating on metal bipolar plates for PEFC. Surf Coat Technol, 2007, 202(4-7): 1252 doi: 10.1016/j.surfcoat.2007.07.065 [27] Dong H, Qi P Y, Li X Y, et al. Improving the erosion-corrosion resistance of AISI 316 austenitic stainless steel by low-temperature plasma surface alloying with N and C. Mater Sci Eng A, 2006, 431(1-2): 137 doi: 10.1016/j.msea.2006.05.122 [28] Liu R, Li X Y, Hu X, et al. Surface modification of a medical grade Co–Cr–Mo alloy by low-temperature plasma surface alloying with nitrogen and carbon. Surf Coat Technol, 2013, 232: 906 doi: 10.1016/j.surfcoat.2013.06.122 [29] Jin J, He Z, Zhao X H. Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti–6Al–4V bipolar plates for PEMFC. Int J Hydrog Energy, 2020, 45(22): 12489 doi: 10.1016/j.ijhydene.2020.02.152 [30] Lee W J, Yun E Y, Lee H B R, et al. Ultrathin effective TiN protective films prepared by plasma-enhanced atomic layer deposition for high performance metallic bipolar plates of polymer electrolyte membrane fuel cells. Appl Surf Sci, 2020, 519: 146215 doi: 10.1016/j.apsusc.2020.146215 [31] Yang C, Wang J H, Xie X F, et al. Surface modification of metal bipolar plate used in direct methanol fuel cell. CIESC J, 2011, 62(Suppl 1): 1楊春, 王金海, 謝曉峰, 等. 表面改性金屬雙極板在直接甲醇燃料電池中的應用. 化工學報, 2011, 62(Suppl 1):1 [32] Tao T, Chen G, Gao P P, et al. Property of TiN coating on surface of Ti bipolar plate. Surf Technol, 2018, 47(1): 192 doi: 10.16490/j.cnki.issn.1001-3660.2018.01.030陶韜, 陳剛, 高平平, 等. 鈦雙極板表面原位生成TiN涂層的性能研究. 表面技術, 2018, 47(1):192 doi: 10.16490/j.cnki.issn.1001-3660.2018.01.030 [33] Zhecheva A, Sha W, Malinov S, et al. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf Coat Technol, 2005, 200(7): 2192 doi: 10.1016/j.surfcoat.2004.07.115 [34] Farghali A, Aizawa T. Nitrogen supersaturation process in the AISI420 martensitic stainless steels by low temperature plasma nitriding. ISIJ Int, 2018, 58(3): 401 doi: 10.2355/isijinternational.ISIJINT-2017-451 [35] Wu B. The Study on the Metallic Bipolar Plates of Fuel Cell Modified by Films Deposited by AIP [Dissertation]. Dalian: Dalian University of Technology, 2007吳博. 燃料電池金屬雙極板電弧離子鍍薄膜改性研究[學位論文]. 大連: 大連理工大學, 2007 [36] Ouyang L Z, Jiang W B, Chen Z J. A review of Ti(C, N) synthesis and preparation technology. Mech &Electr Eng Technol, 2019, 48(5): 1 doi: 10.3969/j.issn.1009-9492.2019.05.001歐陽柳章, 蔣文斌, 陳祖健. 碳氮化鈦合成與制備技術. 機電工程技術, 2019, 48(5):1 doi: 10.3969/j.issn.1009-9492.2019.05.001 [37] Bi J, Yang J M, Liu X X, et al. Development and evaluation of nitride coated titanium bipolar plates for PEM fuel cells. Int J Hydrog Energy, 2021, 46(1): 1144 doi: 10.1016/j.ijhydene.2020.09.217 -