<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

礦漿電解槽內固液攪拌對隔膜變形的影響

盧婷婷 楊潤杰 劉風琴 趙洪亮

盧婷婷, 楊潤杰, 劉風琴, 趙洪亮. 礦漿電解槽內固液攪拌對隔膜變形的影響[J]. 工程科學學報, 2023, 45(7): 1205-1213. doi: 10.13374/j.issn2095-9389.2022.05.23.008
引用本文: 盧婷婷, 楊潤杰, 劉風琴, 趙洪亮. 礦漿電解槽內固液攪拌對隔膜變形的影響[J]. 工程科學學報, 2023, 45(7): 1205-1213. doi: 10.13374/j.issn2095-9389.2022.05.23.008
LU Ting-ting, YANG Run-jie, LIU Feng-qin, ZHAO Hong-liang. Effect of solid-liquid stirring on membrane deformation in the slurry electrolysis tank[J]. Chinese Journal of Engineering, 2023, 45(7): 1205-1213. doi: 10.13374/j.issn2095-9389.2022.05.23.008
Citation: LU Ting-ting, YANG Run-jie, LIU Feng-qin, ZHAO Hong-liang. Effect of solid-liquid stirring on membrane deformation in the slurry electrolysis tank[J]. Chinese Journal of Engineering, 2023, 45(7): 1205-1213. doi: 10.13374/j.issn2095-9389.2022.05.23.008

礦漿電解槽內固液攪拌對隔膜變形的影響

doi: 10.13374/j.issn2095-9389.2022.05.23.008
基金項目: 國家自然科學基金資助項目(51974018)
詳細信息
    通訊作者:

    E-mail: zhaohl@ustb.edu.cn

  • 中圖分類號: TF19

Effect of solid-liquid stirring on membrane deformation in the slurry electrolysis tank

More Information
  • 摘要: 礦漿電解作為一種短流程濕法冶金工藝,隔膜袋在攪拌槳攪動及礦石的磨損下會產生變形,甚至出現破裂,嚴重制約了生產效率。針對該問題,基于單向流固耦合原理,采用計算流體力學與固體有限元相結合的方法對礦漿電解攪拌槽內隔膜變形規律進行了全三維解析。研究發現隔膜袋兩側壓差是導致變形的根本原因,最大變形量出現在垂直高度y=1.2 m位置處,且攪拌轉速越大,隔膜變形所需的最佳液位差越小。當陰極區壓力不足時,隔膜袋向內擠壓變形;壓力增加后,則向兩側鼓包。隔膜最大變形量隨流體域固體體積含量(SL)的增加先減小后增加,在SL=15%時,隔膜變形達到最小值226.7 mm;越靠近槽下部,SL對絕對壓力的影響越大。添加框架約束后,隔膜最大變形量減小到0.664 mm。通過可視化的解析,可以為礦漿電解工業控制提供參照。

     

  • 圖  1  隔膜幾何模型. (a)三維模型;(b)隔膜俯視圖

    Figure  1.  Membrane geometry: (a) three-dimensional model; (b) vertical view

    圖  2  隔膜變形云圖. (a) 三維視圖;(b) 俯視圖

    Figure  2.  Membrane deformation contours: (a) three-dimensional view; (b) vertical view

    圖  3  (a) 混合相絕對壓力分布;(b) 槽內電解質速度分布(z=0 mm)

    Figure  3.  (a) Absolute pressure distribution of the mixture phase; (b) liquid velocity distribution (z = 0 mm plane)

    圖  4  隔膜最大變形量隨陰陽區液位差變化曲線 (SL=12%)

    Figure  4.  Curve of the maximum deformation of membrane with the liquid level (SL = 12%)

    圖  5  隔膜變形量隨液位差變化云圖. (a)Δl = 100 mm;(b)Δl = 120 mm;(c)Δl = 140 mm

    Figure  5.  Contours of membrane deformation versus liquid level : (a) Δl = 100 mm;(b) Δl = 120 mm;(c) Δl = 140 mm

    The membrane on the left part of the impeller; N = 120 rad∙min?1; SL = 12%; d = 74 μm; ρ = 1227 kg·m?3

    圖  6  絕對壓力隨液位差變化曲線

    Figure  6.  Curve of absolute pressure versus liquid level

    N = 120 rad∙min?1; SL = 12%; d = 74 μm; ρ = 1227 kg·m?3

    圖  7  隔膜變形隨陰極區電解液密度變化云圖. (a)ρ = 1268 kg?m?3;(b)ρ = 1330 kg?m?3;(c)ρ = 1372 kg?m?3;(d)ρ = 1392 kg?m?3;(e)ρ = 1413 kg?m?3;(f)ρ = 1455 kg?m?3.

    Figure  7.  Contours of membrane deformation versus electrolyte density in cathode domain: (a) ρ = 1268 kg?m?3; (b) ρ = 1330 kg?m?3; (c) ρ = 1372 kg?m?3; (d) ρ = 1392 kg?m?3; (e) ρ = 1413 kg?m?3; (f) ρ = 1455 kg?m?3.

    The membrane on the left part of the impeller; N = 100 rad∙min?1; SL = 12%; d = 74 μm; $ \Delta l= $50 mm

    圖  8  隔膜最大變形量隨陰極電解液密度變化曲線

    Figure  8.  Curve of the maximum deformation of membrane with the electrolyte density in cathode domain

    圖  9  隔膜最大變形量隨固體體積含量變化

    Figure  9.  Curve of the maximum deformation of membrane versus solid volume fraction

    The membrane on the left part of the impeller; N = 120 rad∙min?1; $ \Delta l= $50 mm; ρ = 1400 kg·m?3

    圖  10  混合相的絕對壓力沿x軸變化曲線。(a)y=0.7 m;(b)y=1.2 m;(c)y=1.7 m(z = 0 m)

    Figure  10.  Curve of absolute pressure along x-axis: (a) y = 0.7 m;(b) y = 1.2 m;(c) y = 1.7 m (z =0 m)

    圖  11  礦漿電解槽隔膜袋的框架約束. (a)隔膜框架位置;(b)隔膜變形云圖

    Figure  11.  Fixed support on the membrane in slurry electrolysis tank: (a) location of fixed support on the membrane; (b) contour of membrane deformation

    表  1  隔膜主要尺寸及物性參數

    Table  1.   Size and physical parameters of the membrane

    ParameterValueParameterValue
    Membranes’ length, L/mm2140Nylon density/(kg?m?3)1140
    Membranes’ width, W/mm174.6Coefficient of thermal expansion/℃?10.000147
    Membranes’ thickness, h/mm5Young’s modulus/Pa1.06×109
    Membranes’ off-bottom clearance/mm600Poisson’s ratio0.35
    Nylon yield strength/Pa4.31×107Bulk modulus/Pa1.1778×109
    Nylon ultimate strength/Pa34.97×107Shear modulus/Pa3.9259×108
    下載: 導出CSV

    表  2  網格無關性驗證

    Table  2.   Mesh independence for the simulation

    MeshCase1Case2Case3Case4
    Elements number for the fluid domain4461000446100044610004461000
    Nodes number for the solid domain5843387265509835181107450
    Maximum deformation, mm174.47184.49185.07185.13
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Qiu D F. The characteristics of slurry electrolysis and research background. Min Metall, 1998, 7(4): 40

    邱定蕃. 礦漿電解的特點和研究背景. 礦冶, 1998, 7(4):40
    [2] Wang C Y, Yin F, Chen Y Q, et al. A Slurry Electrolysis Device: China Patent, 202968719U. 2013-06-05

    王成彥, 尹飛, 陳永強, 等. 一種礦漿電解裝置: 中國專利, 202968719U. 2013-06-05
    [3] Yang X W, Zhang Y J, Deng L H, et al. Leaching mechanism of slurry electrolysis. Eng Sci, 2000, 2(6): 49 doi: 10.3969/j.issn.1009-1742.2000.06.010

    楊顯萬, 張英杰, 鄧綸浩, 等. 礦漿電解過程的浸出機理. 中國工程科學, 2000, 2(6):49 doi: 10.3969/j.issn.1009-1742.2000.06.010
    [4] Chen Y Q, Liu Y, Wang C Y, et al. Continuous expanding test on slurry electrolysis of As-rich antimonic gold concentrate. Nonferrous Met Extr Metall, 2015(12): 5

    陳永強, 劉勇, 王成彥, 等. 高砷銻金精礦礦漿電解連續擴大試驗. 有色金屬(冶煉部分), 2015(12):5
    [5] Wang C Y, Qiu D F, Jiang P H, et al. Slurry electrolysis medium selection for jamesonite treatment. Nonferrous Met, 2002, 2: 35

    王成彥, 邱定蕃, 江培海, 等. 礦漿電解法處理脆硫銻鉛礦的介質體系選擇. 有色金屬, 2002, 2:35
    [6] Wang C Y, Qiu D F, Yin F, et al. Slurry electrolysis of ocean polymetallic nodule. Trans Nonferrous Met Soc China, 2010, 20: 60 doi: 10.1016/S1003-6326(10)60013-1
    [7] Li F F, Chen M J, Shu J C, et al. Copper and gold recovery from CPU sockets by one-step slurry electrolysis. J Clean Prod, 2019, 213: 673 doi: 10.1016/j.jclepro.2018.12.161
    [8] Zhang Y L, Wang C Y, Ma B Z, et al. Extracting antimony from high arsenic and gold-containing stibnite ore using slurry electrolysis. Hydrometallurgy, 2019, 186: 284 doi: 10.1016/j.hydromet.2019.04.026
    [9] Wang C Y, Qiu D F, Jiang P H, et al. Foramtion and oxidation mechanism of sulfur in the process of slurry electrolysis on bismuthinite. Nonferrous Met Extr Metall, 2002(6): 2

    王成彥, 邱定蕃, 江培海, 等. 輝鉍礦礦漿電解過程硫的形成及氧化機理. 有色金屬(冶煉部分), 2002(6):2
    [10] Zhang Y L, Qiu D F, Wang C Y, et al. Anodic process of stibnite in slurry electrolysis: The direct collision oxidation. Chin J Chem Eng, 2022, 41: 466 doi: 10.1016/j.cjche.2021.12.011
    [11] Lu T T, Shen H, Na G Y, et al. CFD simulation of suspension characteristics in a stirred tank for slurry electrolysis. Metall Mater Trans B, 2022, 53(3): 1747 doi: 10.1007/s11663-022-02484-8
    [12] Zhang Y L, Wang C Y, Chen Y Q, et al. Plant practice of slurry electrolysis of high arsenic gold-bearing stibnite concentrate. Nonferrous Met Extr Metall, 2014(11): 16

    張永祿, 王成彥, 陳永強, 等. 高砷銻金精礦礦漿電解生產實踐. 有色金屬(冶煉部分), 2014(11):16
    [13] Yang D Z. Laboratory Amplification for Metals Recovering From WPCBs by Slurry Electrolysis [Dissertation]. Mianyang: Southwest University of Science and Technology, 2019

    楊德澤. 礦漿電解從WPCBs中回收金屬的實驗室放大工藝研究[學位論文]. 綿陽: 西南科技大學, 2019
    [14] Heners J P, Radtke L, Hinze M, et al. Adjoint shape optimization for fluid–structure interaction of ducted flows. Computational Mechanics, 2017, 61(3): 259
    [15] Khalafvand S S, Ng E Y K, Zhong L. CFD simulation of flow through heart: A perspective review. Comput Methods Biomech Biomed Eng, 2011, 14(1): 113 doi: 10.1080/10255842.2010.493515
    [16] Zhu H, Sun Q L, Liu X F, et al. Fluid–structure interaction-based aerodynamic modeling for flight dynamics simulation of parafoil system. Nonlinear Dyn, 2021, 104(4): 3445 doi: 10.1007/s11071-021-06486-0
    [17] Yang M, Wei Y S, Zheng X, et al. CFD simulation and optimization of membrane scouring and nitrogen removal for an airlift external circulation membrane bioreactor. Bioresour Technol, 2016, 219: 566 doi: 10.1016/j.biortech.2016.07.139
    [18] Jin Y, Liu C L, Song X F, et al. Computational fluid dynamics simulation as a tool for optimizing the hydrodynamic performance of membrane bioreactors. RSC Adv, 2019, 9(55): 32034 doi: 10.1039/C9RA06706J
    [19] Gowda H G B, Wallrabe U. Simulation of an adaptive fluid-membrane piezoelectric lens. Micromachines, 2019, 10(12): 797 doi: 10.3390/mi10120797
    [20] Wu S, Song J W, Wei X H, et al. Deformation characteristics of stable pressure chamber diaphragm for pumps of plant protection machinery. J Vib Shock, 2019, 38(7): 257

    吳姝, 宋俊偉, 魏新華, 等. 植保機械用泵穩壓氣室隔膜變形特性研究. 振動與沖擊, 2019, 38(7):257
    [21] Ageze M, Hu Y F, Wu H C. Comparative study on uni- and Bi-directional fluid structure coupling of wind turbine blades. Energies, 2017, 10(10): 1499 doi: 10.3390/en10101499
    [22] Tezduyar T E, Sathe S, Pausewang J, et al. Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech, 2008, 43(1): 39 doi: 10.1007/s00466-008-0261-7
    [23] Sotiropoulos F, Yang X L. Immersed boundary methods for simulating fluid–structure interaction. Prog Aerosp Sci, 2014, 65: 1 doi: 10.1016/j.paerosci.2013.09.003
    [24] Zhang L, He H Y, Zhang X W, et al. One way fluid and structure interaction numerical analysis of vertical axis tidal turbine. J Huazhong Univ Sci Technol Nat Sci, 2014, 42(5): 80

    張亮, 何環宇, 張學偉, 等. 垂直軸水輪機單向流固耦合數值研究. 華中科技大學學報(自然科學版), 2014, 42(5):80
    [25] Liu H L, Xu H, Wu X F, et al. Strength analysis of a diffuser pump based on fluid-structure interaction. J Vib Shock, 2013, 32(12): 27 doi: 10.3969/j.issn.1000-3835.2013.12.006

    劉厚林, 徐歡, 吳賢芳, 等. 基于流固耦合的導葉式離心泵強度分析. 振動與沖擊, 2013, 32(12):27 doi: 10.3969/j.issn.1000-3835.2013.12.006
    [26] Shahrestani A B, Alshuraiaan B, Izadi M. Combined natural convection-FSI inside a circular enclosure divided by a movable barrier. Int Commun Heat Mass Transf, 2021, 126: 105426 doi: 10.1016/j.icheatmasstransfer.2021.105426
  • 加載中
圖(11) / 表(2)
計量
  • 文章訪問數:  371
  • HTML全文瀏覽量:  160
  • PDF下載量:  60
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-05-23
  • 網絡出版日期:  2022-07-14
  • 刊出日期:  2023-07-25

目錄

    /

    返回文章
    返回