Effect of solid-liquid stirring on membrane deformation in the slurry electrolysis tank
-
摘要: 礦漿電解作為一種短流程濕法冶金工藝,隔膜袋在攪拌槳攪動及礦石的磨損下會產生變形,甚至出現破裂,嚴重制約了生產效率。針對該問題,基于單向流固耦合原理,采用計算流體力學與固體有限元相結合的方法對礦漿電解攪拌槽內隔膜變形規律進行了全三維解析。研究發現隔膜袋兩側壓差是導致變形的根本原因,最大變形量出現在垂直高度y=1.2 m位置處,且攪拌轉速越大,隔膜變形所需的最佳液位差越小。當陰極區壓力不足時,隔膜袋向內擠壓變形;壓力增加后,則向兩側鼓包。隔膜最大變形量隨流體域固體體積含量(SL)的增加先減小后增加,在SL=15%時,隔膜變形達到最小值226.7 mm;越靠近槽下部,SL對絕對壓力的影響越大。添加框架約束后,隔膜最大變形量減小到0.664 mm。通過可視化的解析,可以為礦漿電解工業控制提供參照。
-
關鍵詞:
- 礦漿電解 /
- 流固耦合 /
- 隔膜變形 /
- 計算流體力學?有限元 /
- 壓強差
Abstract: As a short-process hydrometallurgical technology, slurry electrolysis (SE) collects the stirring that improves the suspension of ore, the membrane bag that acts as purifying, and the cathodic and anodic plates that promote ion migration in one tank. The stirring helps to maintain the ore suspended. As the SE tank is stirred, the membrane bag will deform and become damaged, severely limiting production efficiency. In this research, the one-way fluid-structure interaction (FSI) was used to examine the impact of the solid–liquid suspension on membrane deformation, which was based on the computational fluid dynamics (CFD) and solid finite element method (FEM). Through the full 3D quantitative analysis, the database of membrane deformation under various conditions was established. The membrane was extruded to the center during the initial stirring conditions, and the greatest deformation measured 891.66 mm. Primarily, membrane deformation was brought on by the pressure differential brought on by liquid velocity, solid concentration distribution, and liquid level. The maximum deformation of the membrane first decreased and then increased with the increased liquid level difference between the cathode and anode. With the upper fixed constraint, the maximum deformation of the membrane appears at y = 1.2 m. The larger the stirring speed is, the smaller the optimal liquid level difference required to minimize the membrane deformation. The stirring speed changes the overall pressure distribution by changing the dynamic pressure in the anode domain. The maximum deformation of the membrane decreases first and then increases with the increase of electrolyte density in the cathode domain. The membrane bag is extruded to the cathode domain when the pressure in the cathode region is insufficient because of the low electrolyte density in the cathode domain. When the cathode pressure increases, the membrane bag bulges to both sides, and the inner bulge is greater than the outer. With an increase in solid volume concentration (SL) in the anode domain, the maximum membrane deformation first reduces and subsequently increases. When SL = 15%, the membrane deformation reaches the minimum value of 226.7 mm. The closer to the bottom of the tank, the greater the influence of solid content on absolute pressure. The maximum membrane deformation is drastically decreased to 0.664 mm when the frame restrictions are considered. It can support the industrial control process via visual analysis.-
Key words:
- slurry electrolysis /
- fluid-solid interaction /
- membrane deformation /
- CFD?FEM /
- pressure difference
-
圖 7 隔膜變形隨陰極區電解液密度變化云圖. (a)ρ = 1268 kg?m?3;(b)ρ = 1330 kg?m?3;(c)ρ = 1372 kg?m?3;(d)ρ = 1392 kg?m?3;(e)ρ = 1413 kg?m?3;(f)ρ = 1455 kg?m?3.
Figure 7. Contours of membrane deformation versus electrolyte density in cathode domain: (a) ρ = 1268 kg?m?3; (b) ρ = 1330 kg?m?3; (c) ρ = 1372 kg?m?3; (d) ρ = 1392 kg?m?3; (e) ρ = 1413 kg?m?3; (f) ρ = 1455 kg?m?3.
The membrane on the left part of the impeller; N = 100 rad∙min?1; SL = 12%; d = 74 μm; $ \Delta l= $50 mm
表 1 隔膜主要尺寸及物性參數
Table 1. Size and physical parameters of the membrane
Parameter Value Parameter Value Membranes’ length, L/mm 2140 Nylon density/(kg?m?3) 1140 Membranes’ width, W/mm 174.6 Coefficient of thermal expansion/℃?1 0.000147 Membranes’ thickness, h/mm 5 Young’s modulus/Pa 1.06×109 Membranes’ off-bottom clearance/mm 600 Poisson’s ratio 0.35 Nylon yield strength/Pa 4.31×107 Bulk modulus/Pa 1.1778×109 Nylon ultimate strength/Pa 34.97×107 Shear modulus/Pa 3.9259×108 表 2 網格無關性驗證
Table 2. Mesh independence for the simulation
Mesh Case1 Case2 Case3 Case4 Elements number for the fluid domain 4461000 4461000 4461000 4461000 Nodes number for the solid domain 584338 726550 983518 1107450 Maximum deformation, mm 174.47 184.49 185.07 185.13 www.77susu.com -
參考文獻
[1] Qiu D F. The characteristics of slurry electrolysis and research background. Min Metall, 1998, 7(4): 40邱定蕃. 礦漿電解的特點和研究背景. 礦冶, 1998, 7(4):40 [2] Wang C Y, Yin F, Chen Y Q, et al. A Slurry Electrolysis Device: China Patent, 202968719U. 2013-06-05王成彥, 尹飛, 陳永強, 等. 一種礦漿電解裝置: 中國專利, 202968719U. 2013-06-05 [3] Yang X W, Zhang Y J, Deng L H, et al. Leaching mechanism of slurry electrolysis. Eng Sci, 2000, 2(6): 49 doi: 10.3969/j.issn.1009-1742.2000.06.010楊顯萬, 張英杰, 鄧綸浩, 等. 礦漿電解過程的浸出機理. 中國工程科學, 2000, 2(6):49 doi: 10.3969/j.issn.1009-1742.2000.06.010 [4] Chen Y Q, Liu Y, Wang C Y, et al. Continuous expanding test on slurry electrolysis of As-rich antimonic gold concentrate. Nonferrous Met Extr Metall, 2015(12): 5陳永強, 劉勇, 王成彥, 等. 高砷銻金精礦礦漿電解連續擴大試驗. 有色金屬(冶煉部分), 2015(12):5 [5] Wang C Y, Qiu D F, Jiang P H, et al. Slurry electrolysis medium selection for jamesonite treatment. Nonferrous Met, 2002, 2: 35王成彥, 邱定蕃, 江培海, 等. 礦漿電解法處理脆硫銻鉛礦的介質體系選擇. 有色金屬, 2002, 2:35 [6] Wang C Y, Qiu D F, Yin F, et al. Slurry electrolysis of ocean polymetallic nodule. Trans Nonferrous Met Soc China, 2010, 20: 60 doi: 10.1016/S1003-6326(10)60013-1 [7] Li F F, Chen M J, Shu J C, et al. Copper and gold recovery from CPU sockets by one-step slurry electrolysis. J Clean Prod, 2019, 213: 673 doi: 10.1016/j.jclepro.2018.12.161 [8] Zhang Y L, Wang C Y, Ma B Z, et al. Extracting antimony from high arsenic and gold-containing stibnite ore using slurry electrolysis. Hydrometallurgy, 2019, 186: 284 doi: 10.1016/j.hydromet.2019.04.026 [9] Wang C Y, Qiu D F, Jiang P H, et al. Foramtion and oxidation mechanism of sulfur in the process of slurry electrolysis on bismuthinite. Nonferrous Met Extr Metall, 2002(6): 2王成彥, 邱定蕃, 江培海, 等. 輝鉍礦礦漿電解過程硫的形成及氧化機理. 有色金屬(冶煉部分), 2002(6):2 [10] Zhang Y L, Qiu D F, Wang C Y, et al. Anodic process of stibnite in slurry electrolysis: The direct collision oxidation. Chin J Chem Eng, 2022, 41: 466 doi: 10.1016/j.cjche.2021.12.011 [11] Lu T T, Shen H, Na G Y, et al. CFD simulation of suspension characteristics in a stirred tank for slurry electrolysis. Metall Mater Trans B, 2022, 53(3): 1747 doi: 10.1007/s11663-022-02484-8 [12] Zhang Y L, Wang C Y, Chen Y Q, et al. Plant practice of slurry electrolysis of high arsenic gold-bearing stibnite concentrate. Nonferrous Met Extr Metall, 2014(11): 16張永祿, 王成彥, 陳永強, 等. 高砷銻金精礦礦漿電解生產實踐. 有色金屬(冶煉部分), 2014(11):16 [13] Yang D Z. Laboratory Amplification for Metals Recovering From WPCBs by Slurry Electrolysis [Dissertation]. Mianyang: Southwest University of Science and Technology, 2019楊德澤. 礦漿電解從WPCBs中回收金屬的實驗室放大工藝研究[學位論文]. 綿陽: 西南科技大學, 2019 [14] Heners J P, Radtke L, Hinze M, et al. Adjoint shape optimization for fluid–structure interaction of ducted flows. Computational Mechanics, 2017, 61(3): 259 [15] Khalafvand S S, Ng E Y K, Zhong L. CFD simulation of flow through heart: A perspective review. Comput Methods Biomech Biomed Eng, 2011, 14(1): 113 doi: 10.1080/10255842.2010.493515 [16] Zhu H, Sun Q L, Liu X F, et al. Fluid–structure interaction-based aerodynamic modeling for flight dynamics simulation of parafoil system. Nonlinear Dyn, 2021, 104(4): 3445 doi: 10.1007/s11071-021-06486-0 [17] Yang M, Wei Y S, Zheng X, et al. CFD simulation and optimization of membrane scouring and nitrogen removal for an airlift external circulation membrane bioreactor. Bioresour Technol, 2016, 219: 566 doi: 10.1016/j.biortech.2016.07.139 [18] Jin Y, Liu C L, Song X F, et al. Computational fluid dynamics simulation as a tool for optimizing the hydrodynamic performance of membrane bioreactors. RSC Adv, 2019, 9(55): 32034 doi: 10.1039/C9RA06706J [19] Gowda H G B, Wallrabe U. Simulation of an adaptive fluid-membrane piezoelectric lens. Micromachines, 2019, 10(12): 797 doi: 10.3390/mi10120797 [20] Wu S, Song J W, Wei X H, et al. Deformation characteristics of stable pressure chamber diaphragm for pumps of plant protection machinery. J Vib Shock, 2019, 38(7): 257吳姝, 宋俊偉, 魏新華, 等. 植保機械用泵穩壓氣室隔膜變形特性研究. 振動與沖擊, 2019, 38(7):257 [21] Ageze M, Hu Y F, Wu H C. Comparative study on uni- and Bi-directional fluid structure coupling of wind turbine blades. Energies, 2017, 10(10): 1499 doi: 10.3390/en10101499 [22] Tezduyar T E, Sathe S, Pausewang J, et al. Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech, 2008, 43(1): 39 doi: 10.1007/s00466-008-0261-7 [23] Sotiropoulos F, Yang X L. Immersed boundary methods for simulating fluid–structure interaction. Prog Aerosp Sci, 2014, 65: 1 doi: 10.1016/j.paerosci.2013.09.003 [24] Zhang L, He H Y, Zhang X W, et al. One way fluid and structure interaction numerical analysis of vertical axis tidal turbine. J Huazhong Univ Sci Technol Nat Sci, 2014, 42(5): 80張亮, 何環宇, 張學偉, 等. 垂直軸水輪機單向流固耦合數值研究. 華中科技大學學報(自然科學版), 2014, 42(5):80 [25] Liu H L, Xu H, Wu X F, et al. Strength analysis of a diffuser pump based on fluid-structure interaction. J Vib Shock, 2013, 32(12): 27 doi: 10.3969/j.issn.1000-3835.2013.12.006劉厚林, 徐歡, 吳賢芳, 等. 基于流固耦合的導葉式離心泵強度分析. 振動與沖擊, 2013, 32(12):27 doi: 10.3969/j.issn.1000-3835.2013.12.006 [26] Shahrestani A B, Alshuraiaan B, Izadi M. Combined natural convection-FSI inside a circular enclosure divided by a movable barrier. Int Commun Heat Mass Transf, 2021, 126: 105426 doi: 10.1016/j.icheatmasstransfer.2021.105426 -