<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

X80管線鋼精煉過程夾雜物形成與演變

鐘華軍 姜敏 王章印 劉帥 姜金星 王新華

鐘華軍, 姜敏, 王章印, 劉帥, 姜金星, 王新華. X80管線鋼精煉過程夾雜物形成與演變[J]. 工程科學學報, 2023, 45(1): 98-106. doi: 10.13374/j.issn2095-9389.2022.05.23.007
引用本文: 鐘華軍, 姜敏, 王章印, 劉帥, 姜金星, 王新華. X80管線鋼精煉過程夾雜物形成與演變[J]. 工程科學學報, 2023, 45(1): 98-106. doi: 10.13374/j.issn2095-9389.2022.05.23.007
ZHONG Hua-jun, JIANG Min, WANG Zhang-yin, LIU Shuai, JIANG Jin-xing, WANG Xin-hua. Formation and evolution of inclusions in the refining process of X80 pipeline steel[J]. Chinese Journal of Engineering, 2023, 45(1): 98-106. doi: 10.13374/j.issn2095-9389.2022.05.23.007
Citation: ZHONG Hua-jun, JIANG Min, WANG Zhang-yin, LIU Shuai, JIANG Jin-xing, WANG Xin-hua. Formation and evolution of inclusions in the refining process of X80 pipeline steel[J]. Chinese Journal of Engineering, 2023, 45(1): 98-106. doi: 10.13374/j.issn2095-9389.2022.05.23.007

X80管線鋼精煉過程夾雜物形成與演變

doi: 10.13374/j.issn2095-9389.2022.05.23.007
基金項目: 國家重點研發計劃資助項目(2021YFB3401001);中央高校基本科研業務費資助項目(FRF-DF-20-08)
詳細信息
    通訊作者:

    E-mail: jiangmin@ustb.edu.cn

  • 中圖分類號: TF769.2

Formation and evolution of inclusions in the refining process of X80 pipeline steel

More Information
  • 摘要: 通過工業試驗取樣研究了X80管線鋼精煉過程夾雜物的類型、尺寸、成分等變化規律,并結合FactSage8.1軟件對鈣處理和鋼液冷卻凝固過程夾雜物的演變機理進行了熱力學計算分析。試驗結果表明,LF精煉結束時夾雜物主要為MgO–Al2O3和MgO–Al2O3–CaO,數量占比分別為25%、75%,其尺寸主要分布在1~5 μm之間,且1~2 μm和2~5 μm的夾雜物比例分別為56.0%、37.3%;RH精煉中T[O]、[N]質量分數分別由LF精煉結束時的0.0022%、0.0059%降低至0.0010%、0.0035%,夾雜物數量密度由LF結束約23.07 mm–2降低至7.44 mm–2,夾雜物去除率約67.8%;鈣處理時,夾雜物主要為MgO–Al2O3–CaO和CaS–Al2O3–CaO系,夾雜物中CaS平均質量分數由RH精煉結束時的8%增加至36%,CaO平均質量分數由24%減少至12%;軟吹結束時,尺寸<40 μm的夾雜物中SiO2占比在0~2.5%之間;尺寸>40 μm的夾雜物中SiO2占比在6.0%~8.0%之間,尺寸>40 μm的夾雜物主要為CaO–Al2O3–MgO–SiO2,其化學成分與精煉渣化學成分基本一致,其來源為精煉渣卷入。熱力學計算結果表明,當[Ca]質量分數在10.5×10–6~15.8×10–6時,尖晶石夾雜全部完成改性,夾雜物全部為液態鈣鋁酸鹽;當鋼液在澆鑄溫度下,夾雜物主要為液態的鈣鋁酸鹽,當溫度降低至1428 ℃時,液態夾雜物完全轉化為固態,隨著溫度繼續下降1309 ℃以下,夾雜物的類型基本不發生改變,整個溫降過程夾雜物中CaO含量減少,CaS含量增加。

     

  • 圖  1  不同精煉過程中夾雜物的典型形貌. (a)L1; (b)R1; (c)R2; (d)R3; (e)T1

    Figure  1.  Typical morphology of inclusions during different refining: (a)L1; (b)R1; (c)R2; (d)R3; (e)T1

    圖  2  不同精煉過程中夾雜物成分變化. (a)L1; (b)R1; (c)R2; (d)R3; (e)T1

    Figure  2.  Composition variation of inclusions during different refining: (a)L1; (b)R1; (c)R2; (d)R3; (e)T1

    圖  3  精煉過程中不同類型夾雜物數量占比

    Figure  3.  Proportion of different types of inclusions during refing

    圖  4  精煉過程中夾雜物中各組元質量分數

    Figure  4.  Mass fraction of different component of inclusions during refining

    圖  5  夾雜物的數量密度和平均尺寸

    Figure  5.  Number density and average size of inclusions

    圖  6  夾雜物尺寸分布

    Figure  6.  Size distribution of inclusions

    圖  7  大尺寸夾雜物元素分布面掃描結果

    Figure  7.  Scanning results of element distribution surface of large-sized inclusions

    圖  8  夾雜物尺寸和組元含量關系

    Figure  8.  Relationship between inclusion size and component content

    圖  9  大尺寸夾雜物與精煉渣的化學成分含量關系

    Figure  9.  Relationship between chemical composition of large-sized inclusions and refining slag

    圖  10  鈣處理時夾雜物優勢區域圖

    Figure  10.  Predominance phase diagram of inclusion during calcium treatment

    圖  11  冷卻凝固過程夾雜物物相轉變

    Figure  11.  Phase transformation of inclusions during cooling and solidification

    圖  12  冷卻凝固過程夾雜物平均成分變化

    Figure  12.  Average composition of inclusions during cooling and solidification

    表  1  X80管線鋼主要化學成分(質量分數)

    Table  1.   Chemical composition of X80 Pipeline steel %

    CSiMnPS[Al][Ca][Mg]
    0.050.251.700.01≤0.0025≤0.05≤0.004≤0.0005
    下載: 導出CSV

    表  2  精煉過程鋼中主要元素含量變化(質量分數)

    Table  2.   Composition variation of essential elements in steel during refining %

    HeatT[O][N][S][Als][Ca][Mg]
    L10.00220.00590.00270.0500.00200.0010
    R10.00100.00350.00240.0460.00130.0005
    R20.00180.00400.00240.0360.00210.0005
    R30.00680.00410.00220.0370.00360.0005
    T10.00120.00430.00200.0340.00160.0005
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Deng W, Gao X H, Qin X M, et al. Impact fracture behavior of X80 pipeline steel. Acta Metall Sin, 2010, 46(5): 533 doi: 10.3724/SP.J.1037.2009.00461

    鄧偉, 高秀華, 秦小梅, 等. X80管線鋼的沖擊斷裂行為. 金屬學報, 2010, 46(5):533 doi: 10.3724/SP.J.1037.2009.00461
    [2] Chang J B, Yang W, Zhang L F, et al. Characteristics and formation mechanism of sulfide in the slab of pipeline steel. Iron Steel, 2019, 54(8): 154

    常金寶, 楊文, 張立峰, 等. 管線鋼鑄坯中硫化物特征及形成機理. 鋼鐵, 2019, 54(8):154
    [3] Zhen F, Liu J, Huang F, et al. Effect of the nonmetallic inclusions on the hic behavior of X120 pipeline steel. J Chin Soc Corros Prot, 2010, 30(2): 145

    鎮凡, 劉靜, 黃峰, 等. 夾雜物對X120管線鋼氫致開裂的影響. 中國腐蝕與防護學報, 2010, 30(2):145
    [4] Domizzi G, Anteri G, Ovejero-Garc??a J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels. Corros Sci, 2001, 43(2): 325 doi: 10.1016/S0010-938X(00)00084-6
    [5] Chu R S, Yang G W, Huang F X, et al. Effect of calcium treatment on non-metallic inclusions in X70 pipeline. J Iron Steel Res, 2013, 25(5): 24

    初仁生, 楊光維, 黃福祥, 等. 鈣處理工藝對X70管線鋼夾雜物的影響. 鋼鐵研究學報, 2013, 25(5):24
    [6] Liu L. Study on Cleanliness Control Technolohy of Acid-resistant Pipeline Steel in Tisco [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    劉亮. 太鋼耐酸管線鋼潔凈度控制技術研究[學位論文]. 北京: 北京科技大學, 2017
    [7] Tang D C, Zhang H Y, Ji L P, et al. Cleanliness of calcium-treated wheel steel. Iron Steel, 2018, 53(4): 37 doi: 10.13228/j.boyuan.issn0449-749x.20170387

    唐德池, 張宏艷, 吉立鵬, 等. 鈣處理車輪鋼潔凈度. 鋼鐵, 2018, 53(4):37 doi: 10.13228/j.boyuan.issn0449-749x.20170387
    [8] Yang G W, Chen Z P, Liu X C. Effect of non-calcium treatment on inclusions in high grade case hardening steel. Iron Steel, 2020, 55(4): 40 doi: 10.13228/j.boyuan.issn0449-749x.20190292

    楊光維, 陳兆平, 柳向椿. 非鈣處理對高等級齒輪鋼夾雜物的影響. 鋼鐵, 2020, 55(4):40 doi: 10.13228/j.boyuan.issn0449-749x.20190292
    [9] Hao X, Chen Z Y, Bai X Y, et al. Study on control of B-type inclusion in high grade pipeline steel. Steelmaking, 2019, 35(3): 74

    郝鑫, 陳振業, 白雪瑩, 等. 高級別管線鋼B類夾雜物控制研究. 煉鋼, 2019, 35(3):74
    [10] Liu J H, Bao Y P, Wang M, et al. Investigation of calcium treatment in X70 pipeline steel. Iron Steel, 2010, 45(2): 40 doi: 10.13228/j.boyuan.issn0449-749x.2010.02.030

    劉建華, 包燕平, 王敏, 等. X70管線鋼鈣處理研究. 鋼鐵, 2010, 45(2):40 doi: 10.13228/j.boyuan.issn0449-749x.2010.02.030
    [11] Liu J H, Wu H J, Bao Y P, et al. Inclusion variations and calcium treatment optimization in pipeline steel production. Int J Miner Metall Mater, 2011, 18(5): 527 doi: 10.1007/s12613-011-0473-2
    [12] Liu Y Q, Zhang P, He W Y, et al. Transformation behavior and control of inclusions in X65 pipelinesteel during whole process. Iron Steel, 2018, 53(12): 44

    劉延強, 張鵬, 何文遠, 等. X65管線鋼全流程夾雜物轉變規律及控制. 鋼鐵, 2018, 53(12):44
    [13] Xu J F, Huang F X, Wang X H. Formation mechanism of CaS–Al2O3 inclusions in low sulfur Al-killed steel after calcium treatment. Metall Mater Trans B, 2016, 47(2): 1217 doi: 10.1007/s11663-016-0599-8
    [14] Yuan T X, Zhang B L, Liu Y Q, et al. Study on inclusion control of high grade pipeline steel. China Metall, 2020, 30(11): 85

    袁天祥, 張丙龍, 劉延強, 等. 高級別管線鋼夾雜物控制研究. 中國冶金, 2020, 30(11):85
    [15] Zhao D W, Li H B, Bao C L, et al. Inclusion evolution during modification of alumina inclusions by calcium in liquid steel and deformation during hot rolling process. ISIJ Int, 2015, 55(10): 2115 doi: 10.2355/isijinternational.ISIJINT-2015-064
    [16] Yang W, Li C, Zhang L F, et al. Reduction of B type inclusions in pipeline steel by optimizing calcium treatment. China Metall, 2018, 28(Suppl 1): 70

    楊文, 李超, 張立峰, 等. 優化鈣處理工藝減少管線鋼B類夾雜物. 中國冶金, 2018, 28(增刊1): 70
    [17] Wang X H, Li X G, Li Q, et al. Control of stringer shaped non-metallic inclusions of CaO–Al2O3 system in API X80 linepipe steel plates. Steel Res Int, 2014, 85(2): 155 doi: 10.1002/srin.201300044
    [18] Wang X H, Li X G, Li Q, et al. Control of string shaped non-metallic inclusions of Cao–Al2O3 system in X80 pipeline steel plates. Acta Metall Sin, 2013, 49(5): 553 doi: 10.3724/SP.J.1037.2012.00505

    王新華, 李秀剛, 李強, 等. X80管線鋼板中條串狀CaO–Al2O3系非金屬夾雜物的控制. 金屬學報, 2013, 49(5):553 doi: 10.3724/SP.J.1037.2012.00505
    [19] Yang J, Wang X H, Jiang M, et al. Effect of calcium treatment on non-metallic inclusions in ultra-low oxygen steel refined by high basicity high Al2O3 slag. J Iron Steel Res Int, 2011, 18(7): 8 doi: 10.1016/S1006-706X(11)60083-6
    [20] Zhao P. Technical Handbook of Secondary Refining and Hot Metal Pretreatment. Beijing: Metallurgical Industry Press, 2004

    趙沛. 爐外精煉及鐵水預處理實用技術手冊. 北京: 冶金工業出版社, 2004
    [21] Zhao C L, Liao X W, Zhang N, et al. Study on technology for improving cleanliness of pipeline steel. Angang Technol, 2015(6): 20 doi: 10.3969/j.issn.1006-4613.2015.06.005

    趙成林, 廖相巍, 張寧, 等. 提高管線鋼潔凈度的工藝技術研究. 鞍鋼技術, 2015(6):20 doi: 10.3969/j.issn.1006-4613.2015.06.005
    [22] Li Q, Wang J, Wang X H, et al. Effects of soft blowing time on behavior of nonmetallic inclusions after calcium treatment in X80 pipeline steel. Iron Steel Vanadium Titanium, 2011, 32(2): 74 doi: 10.7513/j.issn.1004-7638.2011.02.016

    李強, 王建, 王新華, 等. X80管線鋼鈣處理后軟吹時間對夾雜物行為的影響. 鋼鐵釩鈦, 2011, 32(2):74 doi: 10.7513/j.issn.1004-7638.2011.02.016
    [23] Liu C Y, Gao X, Ueda S, et al. Change in composition of inclusions through the reaction between Al-killed steel and the slag of CaO and MgO saturation. ISIJ Int, 2019, 59(2): 268 doi: 10.2355/isijinternational.ISIJINT-2018-584
    [24] Jiang M, Wang K P, Hou Z W, et al. Formation mechanism of oversized DS-type inclusions in low oxygen special steel. Chin J Eng, 2016, 38(6): 780

    姜敏, 王昆鵬, 侯澤旺, 等. 低氧特殊鋼中大尺寸DS類夾雜物生成機理. 工程科學學報, 2016, 38(6):780
    [25] Piva S P T, Pistorius P C. Ferrosilicon-based calcium treatment of aluminum-killed and silicomanganese-killed steels. Metall Mater Trans B, 2021, 52(1): 6 doi: 10.1007/s11663-020-02017-1
    [26] Yin Z Y, Zhang L F, Li C, et al. Analysis of evolution and formation mechanism of calcium-containing inclusions of Q345D steel. Iron Steel, 2020, 55(11): 47 doi: 10.13228/j.boyuan.issn0449-749x.20200208

    音正元, 張立峰, 李超, 等. Q345D鋼中含鈣類夾雜物的演變和生成機理分析. 鋼鐵, 2020, 55(11):47 doi: 10.13228/j.boyuan.issn0449-749x.20200208
    [27] Wang J J, Zhang L F, Chen W, et al. Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold. Chin J Eng, 2021, 43(6): 786

    王舉金, 張立峰, 陳威, 等. 卷渣類夾雜物在結晶器鋼液中成分轉變的動力學模型. 工程科學學報, 2021, 43(6):786
    [28] Zheng W, Tu H, Li G Q, et al. Modeling of slag entrapment and molten steel exposed to atmosphere in refining of 250 t ladle with bottom-blown argon. Chin J Process Eng, 2014, 14(3): 361

    鄭萬, 屠浩, 李光強, 等. 250 t鋼包底吹氬卷渣和鋼液裸漏的模擬. 過程工程學報, 2014, 14(3):361
  • 加載中
圖(12) / 表(2)
計量
  • 文章訪問數:  559
  • HTML全文瀏覽量:  134
  • PDF下載量:  79
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-05-23
  • 網絡出版日期:  2022-07-15
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回