Formation and evolution of inclusions in the refining process of X80 pipeline steel
-
摘要: 通過工業試驗取樣研究了X80管線鋼精煉過程夾雜物的類型、尺寸、成分等變化規律,并結合FactSage8.1軟件對鈣處理和鋼液冷卻凝固過程夾雜物的演變機理進行了熱力學計算分析。試驗結果表明,LF精煉結束時夾雜物主要為MgO–Al2O3和MgO–Al2O3–CaO,數量占比分別為25%、75%,其尺寸主要分布在1~5 μm之間,且1~2 μm和2~5 μm的夾雜物比例分別為56.0%、37.3%;RH精煉中T[O]、[N]質量分數分別由LF精煉結束時的0.0022%、0.0059%降低至0.0010%、0.0035%,夾雜物數量密度由LF結束約23.07 mm–2降低至7.44 mm–2,夾雜物去除率約67.8%;鈣處理時,夾雜物主要為MgO–Al2O3–CaO和CaS–Al2O3–CaO系,夾雜物中CaS平均質量分數由RH精煉結束時的8%增加至36%,CaO平均質量分數由24%減少至12%;軟吹結束時,尺寸<40 μm的夾雜物中SiO2占比在0~2.5%之間;尺寸>40 μm的夾雜物中SiO2占比在6.0%~8.0%之間,尺寸>40 μm的夾雜物主要為CaO–Al2O3–MgO–SiO2,其化學成分與精煉渣化學成分基本一致,其來源為精煉渣卷入。熱力學計算結果表明,當[Ca]質量分數在10.5×10–6~15.8×10–6時,尖晶石夾雜全部完成改性,夾雜物全部為液態鈣鋁酸鹽;當鋼液在澆鑄溫度下,夾雜物主要為液態的鈣鋁酸鹽,當溫度降低至1428 ℃時,液態夾雜物完全轉化為固態,隨著溫度繼續下降1309 ℃以下,夾雜物的類型基本不發生改變,整個溫降過程夾雜物中CaO含量減少,CaS含量增加。Abstract: To further meet the requirements for using pipeline steel in extreme environments and to improve its safety in service, the inclusion control level in pipeline steel urgently needs improvement. In this paper, the variation laws of inclusion type, size, and composition in the refining process of X80 pipeline steel were studied through industrial trial sampling, and the evolution mechanism of inclusions during calcium treatment and steel cooling and solidification was analyzed using thermodynamic calculations with FactSage 8.1 software. The trial results showed mainly MgO–Al2O3 and MgO–Al2O3–CaO inclusions after LF refining in proportions of 25% and 75%, respectively, with sizes mainly distributed between 1–5 μm, and the proportion of inclusions of 1–2 μm and 2–5 μm were 56.0% and 37.3%, respectively. The contents of T[O] and [N] were reduced from 0.0022% and 0.0059% after LF refining to 0.0010% and 0.0035% after RH refining, respectively, and the number density of inclusions was reduced from approximately 23.07 mm?2 after LF to 7.44 mm?2, with an inclusions removal rate of approximately 67.8%. The inclusions were mainly MgO?Al2O3–CaO and CaS–Al2O3–CaO systems during calcium treatment, the average CaS content in the inclusions increased from 8% after RH refining to 36%, and the average CaO content decreased from 24% to 12%. After soft blowing, the SiO2 content ranged from 0 to 2.5% in the inclusions smaller than 40 μm and from 6.0% to 8.0% in the inclusions larger than 40 μm, and the inclusions larger than 40 μm were mainly CaO–Al2O3–MgO–SiO2, whose chemical composition is essentially identical to that of the refining slag, whose source is the refining slag involved; thermodynamic calculations show that when the [Ca] content is between 10.5×10–6–15.8×10–6, all spinel inclusions are modified, and all the inclusions are liquid calcium aluminates; when the steel is at casting temperature, the inclusions are mainly liquid calcium aluminates, and when the temperature is lowered to 1428 ℃, the liquid inclusions completely transform into solid. As the temperature drops below 1309 ℃, the type of inclusions essentially remains constant. During the entire temperature drop, the CaO content in the inclusions decreased, and the CaS content increased.
-
Key words:
- X80 /
- inclusions /
- calcium treatment /
- refining slag /
- cooling and solidification /
- thermodynamics
-
表 1 X80管線鋼主要化學成分(質量分數)
Table 1. Chemical composition of X80 Pipeline steel
% C Si Mn P S [Al] [Ca] [Mg] 0.05 0.25 1.70 0.01 ≤0.0025 ≤0.05 ≤0.004 ≤0.0005 表 2 精煉過程鋼中主要元素含量變化(質量分數)
Table 2. Composition variation of essential elements in steel during refining
% Heat T[O] [N] [S] [Als] [Ca] [Mg] L1 0.0022 0.0059 0.0027 0.050 0.0020 0.0010 R1 0.0010 0.0035 0.0024 0.046 0.0013 0.0005 R2 0.0018 0.0040 0.0024 0.036 0.0021 0.0005 R3 0.0068 0.0041 0.0022 0.037 0.0036 0.0005 T1 0.0012 0.0043 0.0020 0.034 0.0016 0.0005 www.77susu.com -
參考文獻
[1] Deng W, Gao X H, Qin X M, et al. Impact fracture behavior of X80 pipeline steel. Acta Metall Sin, 2010, 46(5): 533 doi: 10.3724/SP.J.1037.2009.00461鄧偉, 高秀華, 秦小梅, 等. X80管線鋼的沖擊斷裂行為. 金屬學報, 2010, 46(5):533 doi: 10.3724/SP.J.1037.2009.00461 [2] Chang J B, Yang W, Zhang L F, et al. Characteristics and formation mechanism of sulfide in the slab of pipeline steel. Iron Steel, 2019, 54(8): 154常金寶, 楊文, 張立峰, 等. 管線鋼鑄坯中硫化物特征及形成機理. 鋼鐵, 2019, 54(8):154 [3] Zhen F, Liu J, Huang F, et al. Effect of the nonmetallic inclusions on the hic behavior of X120 pipeline steel. J Chin Soc Corros Prot, 2010, 30(2): 145鎮凡, 劉靜, 黃峰, 等. 夾雜物對X120管線鋼氫致開裂的影響. 中國腐蝕與防護學報, 2010, 30(2):145 [4] Domizzi G, Anteri G, Ovejero-Garc??a J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels. Corros Sci, 2001, 43(2): 325 doi: 10.1016/S0010-938X(00)00084-6 [5] Chu R S, Yang G W, Huang F X, et al. Effect of calcium treatment on non-metallic inclusions in X70 pipeline. J Iron Steel Res, 2013, 25(5): 24初仁生, 楊光維, 黃福祥, 等. 鈣處理工藝對X70管線鋼夾雜物的影響. 鋼鐵研究學報, 2013, 25(5):24 [6] Liu L. Study on Cleanliness Control Technolohy of Acid-resistant Pipeline Steel in Tisco [Dissertation]. Beijing: University of Science and Technology Beijing, 2017劉亮. 太鋼耐酸管線鋼潔凈度控制技術研究[學位論文]. 北京: 北京科技大學, 2017 [7] Tang D C, Zhang H Y, Ji L P, et al. Cleanliness of calcium-treated wheel steel. Iron Steel, 2018, 53(4): 37 doi: 10.13228/j.boyuan.issn0449-749x.20170387唐德池, 張宏艷, 吉立鵬, 等. 鈣處理車輪鋼潔凈度. 鋼鐵, 2018, 53(4):37 doi: 10.13228/j.boyuan.issn0449-749x.20170387 [8] Yang G W, Chen Z P, Liu X C. Effect of non-calcium treatment on inclusions in high grade case hardening steel. Iron Steel, 2020, 55(4): 40 doi: 10.13228/j.boyuan.issn0449-749x.20190292楊光維, 陳兆平, 柳向椿. 非鈣處理對高等級齒輪鋼夾雜物的影響. 鋼鐵, 2020, 55(4):40 doi: 10.13228/j.boyuan.issn0449-749x.20190292 [9] Hao X, Chen Z Y, Bai X Y, et al. Study on control of B-type inclusion in high grade pipeline steel. Steelmaking, 2019, 35(3): 74郝鑫, 陳振業, 白雪瑩, 等. 高級別管線鋼B類夾雜物控制研究. 煉鋼, 2019, 35(3):74 [10] Liu J H, Bao Y P, Wang M, et al. Investigation of calcium treatment in X70 pipeline steel. Iron Steel, 2010, 45(2): 40 doi: 10.13228/j.boyuan.issn0449-749x.2010.02.030劉建華, 包燕平, 王敏, 等. X70管線鋼鈣處理研究. 鋼鐵, 2010, 45(2):40 doi: 10.13228/j.boyuan.issn0449-749x.2010.02.030 [11] Liu J H, Wu H J, Bao Y P, et al. Inclusion variations and calcium treatment optimization in pipeline steel production. Int J Miner Metall Mater, 2011, 18(5): 527 doi: 10.1007/s12613-011-0473-2 [12] Liu Y Q, Zhang P, He W Y, et al. Transformation behavior and control of inclusions in X65 pipelinesteel during whole process. Iron Steel, 2018, 53(12): 44劉延強, 張鵬, 何文遠, 等. X65管線鋼全流程夾雜物轉變規律及控制. 鋼鐵, 2018, 53(12):44 [13] Xu J F, Huang F X, Wang X H. Formation mechanism of CaS–Al2O3 inclusions in low sulfur Al-killed steel after calcium treatment. Metall Mater Trans B, 2016, 47(2): 1217 doi: 10.1007/s11663-016-0599-8 [14] Yuan T X, Zhang B L, Liu Y Q, et al. Study on inclusion control of high grade pipeline steel. China Metall, 2020, 30(11): 85袁天祥, 張丙龍, 劉延強, 等. 高級別管線鋼夾雜物控制研究. 中國冶金, 2020, 30(11):85 [15] Zhao D W, Li H B, Bao C L, et al. Inclusion evolution during modification of alumina inclusions by calcium in liquid steel and deformation during hot rolling process. ISIJ Int, 2015, 55(10): 2115 doi: 10.2355/isijinternational.ISIJINT-2015-064 [16] Yang W, Li C, Zhang L F, et al. Reduction of B type inclusions in pipeline steel by optimizing calcium treatment. China Metall, 2018, 28(Suppl 1): 70楊文, 李超, 張立峰, 等. 優化鈣處理工藝減少管線鋼B類夾雜物. 中國冶金, 2018, 28(增刊1): 70 [17] Wang X H, Li X G, Li Q, et al. Control of stringer shaped non-metallic inclusions of CaO–Al2O3 system in API X80 linepipe steel plates. Steel Res Int, 2014, 85(2): 155 doi: 10.1002/srin.201300044 [18] Wang X H, Li X G, Li Q, et al. Control of string shaped non-metallic inclusions of Cao–Al2O3 system in X80 pipeline steel plates. Acta Metall Sin, 2013, 49(5): 553 doi: 10.3724/SP.J.1037.2012.00505王新華, 李秀剛, 李強, 等. X80管線鋼板中條串狀CaO–Al2O3系非金屬夾雜物的控制. 金屬學報, 2013, 49(5):553 doi: 10.3724/SP.J.1037.2012.00505 [19] Yang J, Wang X H, Jiang M, et al. Effect of calcium treatment on non-metallic inclusions in ultra-low oxygen steel refined by high basicity high Al2O3 slag. J Iron Steel Res Int, 2011, 18(7): 8 doi: 10.1016/S1006-706X(11)60083-6 [20] Zhao P. Technical Handbook of Secondary Refining and Hot Metal Pretreatment. Beijing: Metallurgical Industry Press, 2004趙沛. 爐外精煉及鐵水預處理實用技術手冊. 北京: 冶金工業出版社, 2004 [21] Zhao C L, Liao X W, Zhang N, et al. Study on technology for improving cleanliness of pipeline steel. Angang Technol, 2015(6): 20 doi: 10.3969/j.issn.1006-4613.2015.06.005趙成林, 廖相巍, 張寧, 等. 提高管線鋼潔凈度的工藝技術研究. 鞍鋼技術, 2015(6):20 doi: 10.3969/j.issn.1006-4613.2015.06.005 [22] Li Q, Wang J, Wang X H, et al. Effects of soft blowing time on behavior of nonmetallic inclusions after calcium treatment in X80 pipeline steel. Iron Steel Vanadium Titanium, 2011, 32(2): 74 doi: 10.7513/j.issn.1004-7638.2011.02.016李強, 王建, 王新華, 等. X80管線鋼鈣處理后軟吹時間對夾雜物行為的影響. 鋼鐵釩鈦, 2011, 32(2):74 doi: 10.7513/j.issn.1004-7638.2011.02.016 [23] Liu C Y, Gao X, Ueda S, et al. Change in composition of inclusions through the reaction between Al-killed steel and the slag of CaO and MgO saturation. ISIJ Int, 2019, 59(2): 268 doi: 10.2355/isijinternational.ISIJINT-2018-584 [24] Jiang M, Wang K P, Hou Z W, et al. Formation mechanism of oversized DS-type inclusions in low oxygen special steel. Chin J Eng, 2016, 38(6): 780姜敏, 王昆鵬, 侯澤旺, 等. 低氧特殊鋼中大尺寸DS類夾雜物生成機理. 工程科學學報, 2016, 38(6):780 [25] Piva S P T, Pistorius P C. Ferrosilicon-based calcium treatment of aluminum-killed and silicomanganese-killed steels. Metall Mater Trans B, 2021, 52(1): 6 doi: 10.1007/s11663-020-02017-1 [26] Yin Z Y, Zhang L F, Li C, et al. Analysis of evolution and formation mechanism of calcium-containing inclusions of Q345D steel. Iron Steel, 2020, 55(11): 47 doi: 10.13228/j.boyuan.issn0449-749x.20200208音正元, 張立峰, 李超, 等. Q345D鋼中含鈣類夾雜物的演變和生成機理分析. 鋼鐵, 2020, 55(11):47 doi: 10.13228/j.boyuan.issn0449-749x.20200208 [27] Wang J J, Zhang L F, Chen W, et al. Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold. Chin J Eng, 2021, 43(6): 786王舉金, 張立峰, 陳威, 等. 卷渣類夾雜物在結晶器鋼液中成分轉變的動力學模型. 工程科學學報, 2021, 43(6):786 [28] Zheng W, Tu H, Li G Q, et al. Modeling of slag entrapment and molten steel exposed to atmosphere in refining of 250 t ladle with bottom-blown argon. Chin J Process Eng, 2014, 14(3): 361鄭萬, 屠浩, 李光強, 等. 250 t鋼包底吹氬卷渣和鋼液裸漏的模擬. 過程工程學報, 2014, 14(3):361 -