<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

不同影響因素下路用黃河泥沙動剪切模量和阻尼比試驗及理論模型研究

王鈺軻 李俊豪 邵景干 余翔

王鈺軻, 李俊豪, 邵景干, 余翔. 不同影響因素下路用黃河泥沙動剪切模量和阻尼比試驗及理論模型研究[J]. 工程科學學報, 2023, 45(3): 509-519. doi: 10.13374/j.issn2095-9389.2022.05.20.001
引用本文: 王鈺軻, 李俊豪, 邵景干, 余翔. 不同影響因素下路用黃河泥沙動剪切模量和阻尼比試驗及理論模型研究[J]. 工程科學學報, 2023, 45(3): 509-519. doi: 10.13374/j.issn2095-9389.2022.05.20.001
WANG Yu-ke, LI Jun-hao, SHAO Jing-gan, YU Xiang. Experimental investigation and theoretical models on dynamic shear moduli and damping ratios for Yellow River sediment under different influence factors[J]. Chinese Journal of Engineering, 2023, 45(3): 509-519. doi: 10.13374/j.issn2095-9389.2022.05.20.001
Citation: WANG Yu-ke, LI Jun-hao, SHAO Jing-gan, YU Xiang. Experimental investigation and theoretical models on dynamic shear moduli and damping ratios for Yellow River sediment under different influence factors[J]. Chinese Journal of Engineering, 2023, 45(3): 509-519. doi: 10.13374/j.issn2095-9389.2022.05.20.001

不同影響因素下路用黃河泥沙動剪切模量和阻尼比試驗及理論模型研究

doi: 10.13374/j.issn2095-9389.2022.05.20.001
基金項目: 國家自然科學基金資助項目(52178369, 52109140);河南省青年人才托舉工程資助項目(2021HYTP016)
詳細信息
    通訊作者:

    E-mail: 289900371@qq.com

  • 中圖分類號: TU441

Experimental investigation and theoretical models on dynamic shear moduli and damping ratios for Yellow River sediment under different influence factors

More Information
  • 摘要: 沿黃河高速公路建設過程中,黃河泥沙作為路基填料的可行性已經得到驗證和重視,然而目前有關黃河泥沙作為路基填料的動力特性的研究較少。本文利用英國GDS動態三軸試驗系統,對取自黃河中下游鄭州段的泥沙進行應力控制的動三軸試驗,探究了圍壓、相對密實度和試驗頻率對黃河泥沙動剪應力–動剪應變關系、動剪切模量G和阻尼比D的影響,繪制了動剪應力–動剪應變關系骨干曲線和滯回曲線。結果表明,黃河泥沙的動剪切模量、阻尼比與剪應變關系可以用Hardin雙曲線模型描述,圍壓對GD的影響較大、試驗頻率對GD的影響較小。綜合與其他土體的動力特性對比表明,黃河泥沙動剪切模量折減曲線規律以及阻尼比D曲線規律和其他土體相符,其動力特性更接近于粉土和砂土,但與其他土體并不完全一致,具有一定的特殊性。最后,本文考慮了圍壓、相對密實度的影響,并結合現有經驗公式,建立可以較好描述黃河泥沙最大動剪切模量Gmax與圍壓、孔隙比關系的經驗公式,同時建立了動剪切模量比G/GmaxD的數學模型,擬合結果顯示,建立的模型能較好地描述黃河泥沙的G/GmaxD隨剪應變的變化規律。

     

  • 圖  1  黃河泥沙級配曲線

    Figure  1.  Yellow River sediment gradation curve

    圖  2  GDS三軸儀

    Figure  2.  GDS triaxial instrument

    圖  3  黃河泥沙動剪應力–動剪應變關系曲線.(a) Dr=40%;(b) Dr=60%;(c) Dr=80%

    Figure  3.  Dynamic shear stress–dynamic shear strain curve of Yellow River sediment: (a) Dr=40%; (b) Dr=60%; (c) Dr=80%

    圖  4  動剪應力–動剪應變關系曲線.(a)不同圍壓;(b)不同頻率

    Figure  4.  Dynamic shear stress–dynamic shear strain curve: (a) different confining pressures; (b) different frequencies

    圖  5  不同影響因素下動剪切模量–剪應變關系曲線.(a)不同圍壓;(b)不同相對密實度;(c)不同頻率

    Figure  5.  Dynamic shear modulus–shear strain curve under different influencing factors: (a) different confining pressures; (b) different relative densities; (c) different frequencies

    圖  6  不同影響因素下阻尼比–剪應變關系曲線。(a)不同圍壓;(b)不同相對密實度;(c)不同頻率

    Figure  6.  Different influencing factor damping ratio–shear strain curves: (a) different confining pressures; (b) different relative densities; (c) different frequencies

    圖  7  不同土Dγd關系曲線

    Figure  7.  Dγd curves of different soils

    圖  8  (a) G–γd擬合示意圖; (b) lgGmaxlg${\sigma'}_{ \mathrm{m}}$關系擬合

    Figure  8.  (a) Gγd fitting schematic; (b) lgGmaxlg${\sigma '}_{ \mathrm{m}}$ relationship fitting

    圖  9  不同土Gmax圍壓關系曲線

    Figure  9.  Gmax–confining pressure curves of different soils

    圖  10  (a) Gmax歸一化曲線圖;(b)不同經驗模型Gmax試驗值與預測值對比

    Figure  10.  (a) Normalized curve of Gmax; (b) comparison of experimental and predicted Gmax values of different empirical models

    圖  11  動剪切模量比–剪應變關系曲線。(a)不同圍壓;(b)不同相對密實度;(c)不同頻率

    Figure  11.  Dynamic shear modulus ratio–shear strain curve: (a) different confining pressures; (b) different relative densities; (c) different frequencies

    圖  12  不同土的動剪切模量折減曲線

    Figure  12.  Dynamic shear modulus reduction curves of different soils

    圖  13  G/Gmaxγd擬合圖。(a)不同圍壓;(b)不同相對密實度;(c)不同頻率

    Figure  13.  G/Gmaxγd fitting diagram: (a) different confining pressures; (b) different relative densities; (c) different frequencies

    圖  14  阻尼比擬合曲線示意圖。(a)不同圍壓;(b)不同相對密實度;(c)不同頻率

    Figure  14.  Damping ratio fitting curve diagram: (a) different confining pressures; (b) different relative densities; (c) different frequencies

    表  1  試驗用砂物性指標

    Table  1.   Physical properties of sand for testing

    Sample nameCoefficient of uniformityCoefficient of curvatureMaximum dry density/(g·cm?3)Minimum dry density/(g·cm?3)Optimum water content/%Plasticity indexSpecific gravity
    Yellow River sediment5.0801.6621.6501.35713.711.42.7
    下載: 導出CSV

    表  2  試驗方案

    Table  2.   Test scheme

    Confining pressure/kPaRelative compaction/%Loading frequency/HzDynamic stress amplitude/kPaNumber of cycles
    50601Based on the test to determine (from 0.1 or 0.05 times the confining pressure to start the step-by-step loading until the specimen is damaged)6
    10040/60/801
    0.01/0.1/
    0.5/1/2
    200601
    400601
    800601
    下載: 導出CSV

    表  3  Gγd擬合結果

    Table  3.   Gγd fitting results

    Confining pressure/
    kPa
    Relative compaction /
    %
    Loading frequency/Hzm/10?3n/10?3R2Gmax/MPa
    5060120.45146.130.99748.90
    10040110.7098.930.99893.46
    6011.5486.080.99786.66
    8010.1671.790.99698.43
    100600.0110.21104.230.99597.94
    0.110.62111.530.99994.16
    0.510.4589.550.99495.69
    111.5486.080.99786.66
    210.9671.740.99691.24
    2006016.8150.410.997146.84
    4004.6923.330.998213.22
    8003.3612.030.995297.62
    下載: 導出CSV

    表  4  Gmax預測結果

    Table  4.   Gmax prediction results

    Confining pressure/kPaRelative compaction/%Loading frequency/HzGmax test valueThis paperLiang KeSaxena
    5060148.9063.1652.0239.76
    10040193.4684.2371.4753.27
    6086.6693.5180.2359.20
    8098.43103.7689.9465.88
    100600.0197.9493.5180.2359.20
    0.194.1693.5180.2359.20
    0.595.6993.5180.2359.20
    186.6693.5180.2359.20
    291.2493.5180.2359.20
    200601146.84138.46123.7388.12
    400213.22205.02190.81131.18
    800297.62303.57294.27195.28
    下載: 導出CSV

    表  5  G/Gmaxγd擬合結果

    Table  5.   G/Gmaxγd fitting results

    Confining pressure/kPaRelative compaction/%Loading frequency/Hzγ0αβR2
    506010.1377491.123360.477420.99756
    1004010.10571.175270.511950.99732
    600.13141.124350.513810.99745
    800.13661.051750.5090.99531
    100600.010.098981.043430.525630.996
    0.10.095961.196970.518550.998
    0.50.1161521.116640.529230.9959
    10.13141.124350.513810.99745
    20.1475421.15630.509240.9966
    2006010.13150.997850.516810.99784
    4000.20321.175530.511440.99827
    8000.2711.045090.522310.99571
    下載: 導出CSV

    表  6  Dγ擬合結果

    Table  6.   Dγ fitting results

    Confining pressure
    /kPa
    Relative compaction/%Loading frequency/HzDminγrsnR2
    506010.0150.1377490.267761.100170.96232
    1004010.0050.10570.252821.819160.9971
    600.0050.13140.251251.680610.99383
    800.0060.13660.242411.666330.99513
    100600.010.010.098980.25511.724920.99819
    0.10.012980.095960.238191.718840.9934
    0.50.00590.1161520.249891.731970.99224
    10.0050.13140.251251.680610.99459
    20.0040.1475420.236021.789680.99364
    2006010.00580.13150.233852.084710.99149
    4000.005680.20320.249711.672250.9987
    8000.0030.2710.241242.097110.99809
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Ruan Z E, Wu A X, Wang Y M, et al. Effect of flocculation sedimentation on the yield stress of thickened ultrafine tailings slurry. Chin J Eng, 2021, 43(10): 1276

    阮竹恩, 吳愛祥, 王貽明, 等. 絮凝沉降對濃縮超細尾砂料漿屈服應力的影響. 工程科學學報, 2021, 43(10):1276
    [2] Wang H J, Wang X L, Kou Y P, et al. Loop test study on the high-concentration cemented filling of full tailings. Chin J Eng, 2021, 43(2): 215

    王洪江, 王小林, 寇云鵬, 等. 全尾砂高濃度膠結充填的環管試驗. 工程科學學報, 2021, 43(2):215
    [3] Hardin B O, Drnevich V P. Shear modulus and damping in soils: Measurement and parameter effects (terzaghi leture). J Soil Mech And Found Div, 1972, 98(6): 603 doi: 10.1061/JSFEAQ.0001756
    [4] Hardin B O, Richart J F E. Elastic wave velocities in granular soils. J Soil Mech And Found Div, 1963, 89(1): 33 doi: 10.1061/JSFEAQ.0000493
    [5] Kokusho T. Cyclic triaxial test of dynamic soil properties for wide strain range. Soils Found, 1980, 20(2): 45 doi: 10.3208/sandf1972.20.2_45
    [6] Saxena S K, Reddy K R. Dynamic moduli and damping ratios for Monterey No.0 sand by resonant column tests. Soils Found, 1989, 29(2): 37
    [7] Liang K, He Y, Chen G X. Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands. Rock Soil Mech, 2020, 41(1): 23

    梁珂, 何楊, 陳國興. 南沙珊瑚砂的動剪切模量和阻尼比特性試驗研究. 巖土力學, 2020, 41(1):23
    [8] Liu X, Li S, Liu X L, et al. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea. Chin J Geotech Eng, 2019, 41(9): 1773

    劉鑫, 李颯, 劉小龍, 等. 南海鈣質砂的動剪切模量與阻尼比試驗研究. 巖土工程學報, 2019, 41(9):1773
    [9] Yasuhara K, Yamanouchi T, Hirao K. Cyclic strength and deformation of normally consolidated clay. Soils Found, 1982, 22(3): 77 doi: 10.3208/sandf1972.22.3_77
    [10] Zhang R, Tu Y J, Fei W P, et al. Effect of vibration frequency on dynamic properties of saturated cohesive soil. Rock Soil Mech, 2006, 27(5): 699 doi: 10.3969/j.issn.1000-7598.2006.05.004

    張茹, 涂揚舉, 費文平, 等. 振動頻率對飽和黏性土動力特性的影響. 巖土力學, 2006, 27(5):699 doi: 10.3969/j.issn.1000-7598.2006.05.004
    [11] Li R S, Chen L W, Yuan X M, et al. Experimental study on influences of different loading frequencies on dynamic modulus and damping ratio. Chin J Geotech Eng, 2017, 39(1): 71 doi: 10.11779/CJGE201701005

    李瑞山, 陳龍偉, 袁曉銘, 等. 荷載頻率對動模量阻尼比影響的試驗研究. 巖土工程學報, 2017, 39(1):71 doi: 10.11779/CJGE201701005
    [12] Sun J, Yuan X M. Effects of consolidation ratios of sands on dynamic shear modulus and response spectrum of soil surface. Rock Soil Mech, 2007, 28(3): 443 doi: 10.3969/j.issn.1000-7598.2007.03.003

    孫靜, 袁曉銘. 固結比對砂土動剪切模量及地表反應譜的影響. 巖土力學, 2007, 28(3):443 doi: 10.3969/j.issn.1000-7598.2007.03.003
    [13] Liu X Z, Chen G X, Hu Q X. Primary study on dynamic shear modulus and damping ratio of recently deposited soil in area of Nanjing. Earthq Eng Eng Vib, 2002, 22(5): 127 doi: 10.3969/j.issn.1000-1301.2002.05.023

    劉雪珠, 陳國興, 胡慶興. 南京地區新近沉積土的動剪切模量和阻尼比的初步研究. 地震工程與工程振動, 2002, 22(5):127 doi: 10.3969/j.issn.1000-1301.2002.05.023
    [14] Hardin B O, Drnevich V P. Shear modulus and damping in soils: Design equations and curves. J Soil Mech And Found Div, 1972, 98(7): 667 doi: 10.1061/JSFEAQ.0001760
    [15] Menq F Y. Dynamic Properties of Sandy and Gravelly Soils [Dissertation]. Texas: The University of Texas at Austin, 2003
    [16] Liang K, Chen G X, Liu K, et al. Degradation properties and prediction model of maximum shear modulus of saturated coral sand under cyclic triaxial loading. Rock Soil Mech, 2020, 41(2): 601 doi: 10.16285/j.rsm.2019.0082

    梁珂, 陳國興, 劉抗, 等. 飽和珊瑚砂最大動剪切模量的循環加載衰退特性及預測模型. 巖土力學, 2020, 41(2):601 doi: 10.16285/j.rsm.2019.0082
    [17] Wang J. Experimental Study on Dynamic Elasticity Modulus and Damping Ratio of Coarse-Grained Soils [Dissertation]. Changsha: Central South University, 2013

    王佳. 粗粒土動彈性模量與阻尼比試驗研究[學位論文]. 長沙: 中南大學, 2013
    [18] Luan M T, He Y, Xu C S, et al. Experimental study of cyclic shear behaviour of silty soils in Yellow River Delta. Rock Soil Mech, 2008, 29(12): 3211 doi: 10.3969/j.issn.1000-7598.2008.12.006

    欒茂田, 何楊, 許成順, 等. 黃河三角洲粉土循環剪切特性的試驗研究. 巖土力學, 2008, 29(12):3211 doi: 10.3969/j.issn.1000-7598.2008.12.006
    [19] Rollins K M, Evans M D, Diehl N B, et al. Shear modulus and damping relationships for gravels. J Geotech Geoenviron Eng, 1998, 124(5): 396 doi: 10.1061/(ASCE)1090-0241(1998)124:5(396)
    [20] Chen G X, Zhou Z L, Pan H, et al. The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range. Eng Geol, 2016, 204: 77 doi: 10.1016/j.enggeo.2016.02.008
    [21] Chen G X, Zhou Z L, Sun T, et al. Shear modulus and damping ratio of sand-gravel mixtures over a wide strain range. J Earthq Eng, 2019, 23(8): 1407 doi: 10.1080/13632469.2017.1387200
    [22] He X M, Chen Z Q, Zhang T. Experimental studies on dynamic shear modulus and damping ratio of sandy soil in Wuhan. World Earthq Eng, 2010, 26(Suppl 1): 41

    何曉民, 陳志強, 張婷. 武漢砂土動剪切模量與阻尼比的試驗研究. 世界地震工程, 2010, 26(增刊1): 41
    [23] Senetakis K, Anastasiadis A, Pitilakis K. The small-strain shear modulus and damping ratio of quartz and volcanic sands. ASTM International, 2012, 35(6): 1
    [24] Guo K X. Experimental Study on Dynamic Triaxial of Unsaturated Loess [Dissertation]. Xi'an: Changan University, 2015

    郭可骍. 非飽和黃土的動三軸試驗研究[學位論文]. 西安: 長安大學, 2015
    [25] Martin P P, Seed H B. One-dimensional dynamic ground response analyses. J Geotech Engrg Div, 1982, 108(7): 935 doi: 10.1061/AJGEB6.0001316
  • 加載中
圖(14) / 表(6)
計量
  • 文章訪問數:  454
  • HTML全文瀏覽量:  172
  • PDF下載量:  49
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-05-20
  • 網絡出版日期:  2022-08-08
  • 刊出日期:  2023-03-01

目錄

    /

    返回文章
    返回